Подпишись и читай
самые интересные
статьи первым!

Riaa корректор c последовательной коррекцией. По настоящему качественный MM RIAA корректор

На днях на форуме "Отечественная радиотехника ХХ века" завязался разговор по поводу ламповых корректоров RIAA. Я так же "ввязался" в эту беседу и по ходу разговора вспомнил про ещё одну свою старую, забытую конструкцию. Это ламповый предусилитель с RIAA корректором для ММ-головки, который я делал ещё в 1999 году. Собран он по схеме Ю. Макарова "Неофит" и был описан в журнале "Hi-Fi & Music" № 11 - 1997 год .

Принципиальная схема корректора-предусилителя.

Пришлось потратить немало времени, что бы отыскать эту конструкцию в "залежах" в кладовой. Найти то я его нашёл, но оказалось, что за эти годы я его капитально "распотрошил". И хотя нашлись и остальные блоки (кроме силового трансформатора и дросселя), конструкция уже представляет собой "жалкое зрелище":

На фото: остатки когда-то готовой конструкции.

Когда и зачем я её разобрал - уже не помню. Но помню, что довольно продолжительное время слушал грампластинки через этот корректор (у меня тогда был проигрыватель "Вега-106") и "Аркам". Да и с помощью предусилителя я проводил эксперименты: пытался "облагородить" гармониками звучание CD-проигрывателя.
Плата предусилителя нашлась в другой коробке. Подозреваю, что она то же ещё рабочая:) Когда-то она стояла рядом с платой RIAA. Ну и сохранился ещё анодный БП. На входе стоял кенотрон, потом LC-фильтр, потом стабилизатор на КТ805 на +300 В.

На фото: платы предусилителя и анодного стабилизатора.

Собственно, я хотел проверить работоспособность корректора и, если он ещё рабочий, послушать его и сравнить с тем, который я сейчас "слушаю". Для этого я демонтировал плату из корпуса, осмотрел монтаж, проверил отсутствие КЗ и т.д. - ведь плата, как минимум, лет 8-9 не включалась:

На фото: вид на плату корректора сверху и снизу.

На плате написана дата её изготовления: 26 января 1999 года. Естественно, у меня тогда ещё не было РС (ну, кроме самодельного "Синклера", естественно:)), а про ЛУТ, Sprint Layout и другие радиолюбительские "полезняшки" я узнал много позже:) Поэтому плата нарисована по-старинке, стеклянным рейсфедером и лаком для ногтей.

Чертёж печатной платы корректора и дата изготовления платы.

Осмотром я остался доволен, поэтому подключил её к своему "медному" БП (в БП пришлось сделать небольшую доработку - вывести на колодку напряжение после кенотрона и фильтра, поскольку стабилизатор выдает максимум +220 В). После включения ничего не задымилось и не взорвалось, что уже хорошо:) Под нагрузкой анодное напряжение оказалось равным +291 В, что вполне нормально (штатно д.б. +300 В). Проверил и немного подстроил постоянные напряжения на электродах обеих ламп 6Ж32П. Небольшие отклонения от указанных на схеме есть, но всё в пределах нормы.
После этого подключил его к ресиверу Denon и немного послушал музыку. Откровенно не понравилось. Звук совершенно плоский, как из ведра. Погонял его в "фоновом" режиме часика полтора-два, после чего ещё разок решил послушать музыку.
Аппарат как буд-то бы заменили! Звук стал сочным, насыщенным, таким, какой и ждёшь от пластинки:) Ради интереса, подключил проигрыватель к своему "штатному" корректору. В принципе, отличия есть, но на уровне "нюансов". Но опять-таки, если "Неофит" смонтировать в нормальном корпусе, сделать хороший БП, развести землю, тщательно выставить все режимы, да ещё и заменить проходные конденсаторы (а стоят там не очень качественные ёмкости - поставил те, что удалось тогда найти) - думаю, он "зазвучит" очень хорошо.

На фото: корректор с блоком питания и общий вид "тестового стенда"

Следующим этапом был эксперимент с заменой ламп. В хозяйстве нашлось 3 лампы EF86 фирмы Tesla. Причём, у одной лампы нет 2 и 7 ножек (экрана). Я думал, их кто-то отрезал, но когда присмотрелся, то увидел, что, похоже, их не было с завода.

На фото: лампы EF86; красными кружками обведены отсутствующие ножки.

После того, как я их установил и включил корректор, в колонках началась настоящая "пальба", треск, да такой, что быстренько сработала защита Денона. Вобщем, дал им прогреться с пол-часа, после чего снова аккуратно включил Денон. Стрельба закончилась и мне удалось послушать корректор с этими лампами. Со слухом у меня вроде бы всё нормально, но я, честно говоря, не услышал никакой разницы. Ну вообще никакой. Единственное отличие - когда я колотил рукояткой отвертки по работающей 6Ж32П, звук был очень чётким и звонким, а у Тесловской лампы он "глухой". В этом смысле, конечно, EF86 выглядят лучше.
Одним словом, проверил старенький корректор и теперь с чистой совестью отправлю его своему коллеге. Если он приложит немного усилий, то получит очень хороший корректор для приятного прослушивания пластинок. :)

Напоследок ещё пара симпатичных фотографий.

На фото: лампы корректора в работе и проигрыватель "Yamaha TT-400".

Виниловый ренессанс не состоялся и, по видимому, уже не состоится никогда. Но ностальгия по LP сохранилась у довольно большой аудитории меломанов, причем в рядах их поклонников много и совсем молодых любителей музыки.

Не будем спорить, что лучше, цифра или аналог. Интерес к пластинкам есть, спрос на вертушки и аксессуары стабилен, а на фонокорректоры даже превышает предложение. Если же учесть, что среди виниловых людей необычайно высок процент самодельщиков, то выход из создавшейся ситуации напрашивается сам собой: нужно дать возможность всем желающим самостоятельно изготовить недорогой, но качественный корректор RIAA.

РАЙСКАЯ ПТИЦА

Лучшим вариантом, очевидно, будет не радиолюбительская схема, а конструкция, подготовленная к серийному производству, и таковая имеется. В 1994 году КБ «Три В» разработало предварительный ламповый усилитель Paradise, и по договорённости с заводом «Прибой» было изготовлено 100 аппаратов. Чуть позже силами самого КБ еще 50 - для изучения потребительского спроса.

В 1996 году эта модель демонстрировалась на выставке «Российский Hi-End» и собрала немало положительных отзывов. В усилителе были предусмотрены обширные потребительские и функциональные возможности. Одной и, пожалуй, основной был встроенный RIAA-фонокорректор.

Однако бурное наступление CD поставило жирный крест на этом изделии, и выпуск Paradis’ов был прекращён. Против лома нет приема, и спорить с цифрой бессмысленно. При всех ее недостатках кое за что ей можно сказать спасибо: цифровые источники «подтянули» остальные звенья аудиотракта - усилители, акустику и кабели - на новый уровень. Была пересмотрена схемотехника, появилось скептическое отношение к ООС, начали обращать внимание на качество питания, спектр искажений и т.д. Возросший уровень компонентов (особенно АС) позволил отказаться от регулировки тембра, поэтому темброблоки и эквалайзеры благополучно канули в Лету.

Вместе с этим такой вид техники, как фонокорректоры, был совершенно забыт производителями. В наше КБ стали поступать заявки от любителей музыки на изготовление таких изделий, и количество их постоянно росло. Поэтому мы решили начать выпуск RIAA-корректоров, выделив их в самостоятельный блок.

Чтобы найти надежную, недорогую и хорошо звучащую схему, мы собрали более пяти экспериментальных образцов на базе Paradise, но с использованием различной элементной базы, в основном ламп, а также конденсаторов, резисторов, проводов и разъёмов.

Не стану подробно останавливаться на описании этих вариантов, просто перечислю схемотехнические решения.

  • Вариант 1. Первый каскад - триод 6С3П с резистивной нагрузкой в аноде, второй - SRPP на 6Н23П.
  • Вариант 2. Первый каскад - 1579 (6Н9С) в каскодном включении, второй - 6Н8С (разных заводов) с резистивной нагрузкой.
  • Вариант 3. Первый каскад - SRPP на 1579, второй - 6Н8С с резистивной нагрузкой.
  • Вариант 4. Все каскады SRPP на 12АТ7.
  • Вариант 5. Все каскады SRPP, но первая лампа 6Н2П (серый анод), вторая - 6Н1П.

Питание корректоров осуществлялось от блока питания на кенотроне 5Ц3С с П-фильтром. Использовались конденсаторы МБГО-20 мкФ х 400В, Др-2,5 Гн-0,1 А.

В результате многократных прослушиваний был сделан вывод, что все эти варианты имеют право на жизнь, хотя и звучат совершенно по-разному.

Мы остановились на исходном, с которого начинали эксперименты, с незначительными изменениями элементной базы. Мы заметили, что SRPP обладают более динамичным звучанием, чем каскады с резистивной нагрузкой.

Корректоры на лампах октальной серии звучат очень по-разному, и, по нашему мнению, первый каскад на пальчиковых лампах по схеме SRPP дает большую динамику и скорость. Кроме того, октальные лампы более дефицитны, т.к. выпуск их давно прекратился, а те, что дожили до наших дней, могут иметь нестабильные параметры из-за плохого вакуума.

Поэтому выбор был сразу сделан в пользу пальчиковых ламп. Тем более что их ассортимент значительно шире и при повторении схемы открываются более широкие возможности для поиска собственного звука.

При смене ламп одинаковой цоколёвки АЧХ корректора не изменяется, меняется только коэффициент усиления и характер звучания. В некоторых случаях требуется изменить смещение на сетках, чтобы получить нужный ток анода.

Прослушивание проводилось в таком составе: доработанный проигрыватель «Электроника Б1-01» с головкой Shure-V15VxMR (иногда использовалась также головка «Корвет-018»), усилитель «Oberton-33Cstb» и АС различных типов.

Схема особых пояснений не требует, т.к. для многих любителей, конструирующих р/аппаратуру, это хорошо известные каскады SRPP, широко дискутируемые в специальной литературе. ООС в тракте отсутствует, коррекция пассивная. Элементы корректирующей цепи подобраны с наименьшими отклонениями от номинала. Конденсаторы К71-7 имеют допуск не более 0,5%, резисторы МЛТ-0,25 подбирались с точностью 1%. В результате все изготовленные нами корректоры имели отклонения АЧХ не более 0,5 дБ. Все детали самые обычные, никакой экзотики: резисторы МЛТ, электролиты К50-32, К53-4(К53-1), переходные конденсаторы - бумажные К40У-9 или МБГЧ. Разумеется, аудиофильские компоненты дадут более впечатляющие результаты, но и при использовании перечисленных типов корректор звучит великолепно. Конденсаторы С1 и С10 служат для подавления радиопомех, что особенно актуально в городах, где есть телецентры и р/станции. С2, С6, С11, С15 служат для компенсации местной ООС. Элементы R5, C3, R6, C4, а также R17, C12, R18, C13 - формируют нужную АЧХ.

Источник питания

На питании стоит остановиться подробнее. В упомянутом преде Paradise в качестве источника питания использовался серийно выпускавшийся трансформатор ТАН-31, мостовой выпрямитель КЦ 405А и электролиты К50-7.

Накал ламп питался выпрямленным напряжением, чтобы снизить фон на выходе.

В новой разработке мы поставили прямонакальный кенотрон 5Ц3С, металлобумажные конденсаторы МБГО-1 20 мкФ х 400В и дроссель с индуктивностью 2,5 Гн и током 0,1 А. От выпрямления напряжения питания накала ламп пришлось отказаться, т.к. это влияло на характер звучания корректора не самым лучшим образом. Для уменьшения фона в сетевом трансформаторе накальные обмотки мотались бифилярно (т.е. в два провода), и средняя точка соединялась с минусом анодного источника питания и корпусом. Эти меры не устраняли полностью фон по накалу, но его уровень был незначителен и при прослушивании почти не слышен, т.к. маскировался поверхностными шумами пластинки.

Сетевой трансформатор тороидальный, мощностью 60 Вт. Он имеет две обмотки по 240 В, 5 В для накала кенотрона и 12,6 В с отводами на 6,3 В (бифилярно).

Ещё более высокое качество звучания было получено со стабилизированным источником питания, который мы опробовали на лабораторном образце корректора. Звучание приобрело насыщенность, стало более артикулированным, с более чёткими границами между инструментами, улучшилась микродинамика. Правда, по себестоимости такой источник питания приближается к самому корректору, но попробовать стоит.

Конструкция

Сам корректор выполнен на печатной плате из фольгированного стеклотекстолита толщиной 1,5 - 2 мм. Источник питания установлен на металлическом основании (дюраль, сталь, текстолит и пр.) толщиной 2 мм. Оба блока (питания и корректор) укреплены на стойках высотой 13 мм на общем основании, к которому через крепёжные уголки устанавливается лицевая панель и задняя стенка. Всё это закрывается перфорированным кожухом. Снизу - поддон, к которому прикреплены четыре опорные ножки. На задней стенке - сетевой разъём и выключатель, предохранитель и корпусная клемма. На лицевой панели - входные и выходные разъёмы и индикатор включения корректора в сеть.

Настройка

В ней корректор практически не нуждается. Нужно лишь проверить напряжение питания анодных и накальных цепей, замерить режимы ламп. Равенство усиления по каналам осуществляется подбором ламп с учётом их параметров. При одинаковых параметрах триодов разброс по усилению не превысит 0,1 дБ.

Полезные советы

Чтобы дать себе больше свободы при выборе ламп, полезно в сетевом трансформаторе предусмотреть обмотку ~12,6 B на ток примерно 1 А. В настоящее время на рынке появилась масса ламп с одинаковой цоколёвкой, но разным напряжением накала. Конечно, у них предусмотрена возможность использования на 6,3 В, но в нашем случае это увеличит фон. Рекомендуемые лампы для прослушивания: 6Н2П (серый анод), 6Н23П, 6Н1П, 6Н6П, 12АХ7,12АТ7, 12AU7, E88CC, ECC83, ECC85 и др.

Можно попытать счастья и с октальными лампами, но для этого придется сделать переходные панельки.

При прослушивании имейте в виду, что все диски звучат по-разному и для выбора самой лучшей лампы придется прослушать несколько пластинок различных фирм и годов выпуска. Успехов!

ПрактикаAV #3/2002

Введение

Кривая RIAA является общепринятым стандартом для виниловых дисков. Он используется в течение длительного времени с 1954 года. К 1956 году новый стандарт, за которым закрепилось название «кривой RIAA», вытеснил конкурирующие форматы и захватил рынки США и Западной Европы. В 1959 году кривая RIAA была одобрена, а в 1964 году стандартизована Международной электротехнической комиссией. В 1976 году МЭК видоизменила стандартную кривую воспроизведения RIAA в области низких частот; нововведение встретило ожесточённую критику и не было принято промышленностью. В XXI веке подавляющее большинство производителей предусилителей-корректоров следует первоначальному стандарту кривой RIAA без изменений, введённых МЭК в 1976 году.

Частотная коррекция по стандарту RIAA может быть реализована как активными, так и пассивными фильтрами, и комбинациями фильтров двух типов. Многие используют корректоры, построенные полностью на пассивных фильтрах, в убеждении, что они звучат «лучше», но схема, показанная здесь, реализована комбинацией фильтров двух типов. Эта концепция была разработана мною задолго до появления Интернета, а показанная схема (с несколькими небольшими изменениями) была впервые опубликована на веб-сайте ESP в 1999 году.

На приведенном выше графике показана теоретическая и фактическая АЧХ RIAA, нормализованная к 0 дБ на частоте 1 кГц. Большинство фонокрорректоров RIAA имеют дополнительный (и нежелательный) ноль на некоторой частоте выше 20 кГц. Этот дополнительный ноль отсутствует в описываемой конструкции, потому что в схеме используется пассивный фильтр нижних частот, который продлевает кривую АЧХ выше 20 кГц, при этом конечный предел значительно превышает 10 МГц (в зависимости от собственной индуктивности конденсатора).

Термины «полюс» и «нуль» нуждаются в некотором (в данном случае упрощенном) объяснении. Один полюс заставляет сигнал снижаться со скоростью 6 дБ / октава (20 дБ / декада), а один нуль вызывает рост с той же скоростью. Если после полюса вводится ноль (как показано выше), то эффект заключается в том, чтобы перевести АЧХ в горизонтальную форму. Горизонтальная АЧХ наблюдается на частотах от 500 Гц до 2100 Гц. Следующий полюс (2,100 Гц) заставит сигнал снова снижаться. «Неопределенный» ноль выше 20 кГц вызван тем, что многие предусилители не могут уменьшить свой коэффициент усиления ниже некоторого фиксированного значения, определенного схемой. Однако, не все корректоры обладают этой проблемой, нет ее и в приведенной схеме.

Следует отметить, что стремление к «идеальной» точности бессмысленно, так как многое зависит от иглы, тонарма и (конечно) записи. Когда вы покупаете винил, никто не скажет вам, какой эквалайзер был применен во время мастеринга, кроме того, АЧХ ухудшается после многократного воспроизведения. Поэтому, в конечном счете, вы должны позволить своим ушам стать последним судьей в том, что предпочтительно именно вам.

Представленный фонокорректор соответствует кривой RIAA, он очень «тихий» и обеспечивает гораздо лучшую звуковую эффективность, чем подавляющее большинство тех устройств, что приводятся в различных журналах. Как и в остальных каскадах предусилителя, в схеме фонокорректора используется ОУ NE5532. Он обладает низким уровнем шума, высокой скоростью и приемлемой ценой. Он идеально подходит для такого рода применения. Другим отличным ОУ является OPA2134.


Рис. 1. Схема фонокорректора

Входной конденсатор помечен * (C LL , и его эквивалент на правом канале - C LR) и устанавливаются опционально. Почти во всех случаях он не нужен, так как емкость кабеля между звукоснимателем и предусилителем будет (более чем) достаточной. Некоторые производители указывают требуемую емкость нагрузки, но многие этого не делают. Подавляющее большинство звукоснимателей выполнены с самой низкой возможной емкостью, и добавление дополнительного конденсатора вряд ли улучшит ситуацию. Мало у кого есть возможность измерить емкость межблочных соединений или внутренних кабелей тонарма, но она, как правило, находится в пределах 100 пФ со стандартными кабелями. В случае, если производитель звукоснимателя заявил более высокую емкость – не стесняйтесь экспериментировать со значением C L . Лучше всего подключать эти конденсаторы непосредственно к входным разъемам, а не размещать на печатной плате. Конденсаторы должны быть подобраны таким образом (с точностью до 1%), чтобы левый и правый каналы остались правильно сбалансированными.

Конденсаторы с высокими емкостями могут быть неполярными электролитическими, так как через них не будет (практически) протекать постоянный ток. Тем не менее, они довольно большие по размеру, и стандартные электролитические или даже танталовые конденсаторы могут быть использованы вместо них. Полярные конденсаторы будут нормально функционировать без влияния постоянного напряжения, а тантал - мой нелюбимый тип конденсатора и поэтому не рекомендуется. Напряжение переменного тока, протекающего через С2L/R и C3R/L никогда не будет превышать ~5 мВ на любой частоте вплоть до 10 Гц, и эти конденсаторы не играют никакой роли в построении кривой RIAA. Не бойтесь увеличить значение, если хотите (100 мкФ не является проблемой).

Конденсаторы с низкими емкостями должно быть с точностью 2,5%, в противном случае будет трудно подобрать те, которые находятся ближе всего к требуемому значению. Будет происходить некоторое отклонение от идеальной кривой RIAA, если номиналы этих конденсаторов будут находятся слишком далеко от указанных значений. Наиболее важным является соответствие между каналами - он должно быть как можно более точным.

Резисторы - металлопленочные с точностью 1% и низким уровнем шума. Эта конструкция отличается от большинства других тем, что формирование низкой и высокой частоты выполняется независимо – активным фильтром НЧ и пассивным фильтром ВЧ. Из-за низкого значения выходного резистора, входное сопротивление следующего каскада снизится до 22 кОм и вызовет незначительное искажение кривой RIAA.

На рис. 1 показан только один канал, а другой использует оставшуюся половину каждого ОУ. Помните, что «+» питания подключается к контакту 8, а «–» питания - к контакту 4.

Общепринятое выравнивание кривой при 50 Гц не была полностью реализовано, так как большинство слушателей считают, что бас звучит гораздо более естественно без этого. В связи с этим можно сказать, что точности не хватает, но я до сих пор использую эту неточность и не выявил никаких проблем с низкочастотным шумом.

Обратите внимание, что нет необходимости использовать фильтр ИНЧ. Схема обеспечивает уровень -3 дБ в точке около 3 Гц. ИНЧ играют важную роль, особенно если вы используете сабвуфер. Отличным вариантом является хорошо демпфированная и изолированная платформа для проигрывателя. Я успешно использовал большую бетонную плиту, покрытую ковровым покрытием и демпфированную с использованием пенорезины. Для того, чтобы все сделать правильно, потребуются некоторые эксперименты. Как правило, хорошие результаты получаются при сжатии пеноматериала до 70% его нормальной толщины под весом бетонной плиты и проигрывателя. Полка, прикрепленная к стене, является еще одним хорошим методом обеспечения инфразвуковой изоляции.

Если все же будет иметь место низкочастотный шум, вы увидите энергичное движение диффузора, даже если нет баса. В таком случае я рекомендую включать в схему инфразвуковой фильтр (Project 99). Стандартная конфигурация - 36 дБ на октаву с ослаблением -3 дБ на частоте 17 Гц. Как правило, это помогает устранить даже самые сильные низкочастотные помехи, вызванные использование искривленных дисков. Обычно это помогает также устранить проблемы НЧ обратной связи, но они должны быть ниже частоты среза фильтра.

Характеристики кривой RIAA

Как видно из таблицы, отклонение от стандарта составляет менее 1 дБ, а коэффициент усиления на частоте 1 кГц составляет около 40 дБ (100), поэтому номинальные 5 мВ с выхода звукоснимателя даст 500 мВ. Это значение может быть увеличено в случае необходимости за счет увеличения значения резистора 100 кОм во втором каскаде. Необходимо проявлять осторожность, чтобы усиление не возросло слишком сильно и не вызвало клиппинг. Как можно заметить, второй каскад имеет коэффициент усиления 38 (31 дБ).

Если резистор 100 кОм увеличить до 220 кОм общее усиление будет чуть больше, чем в два раза, на 38 дБ. Входной сигнал на 2-й ступени в 17 мВ (5 мВ с выхода звукоснимателя) дает нормальный выход на 1 кГц (до пассивного фильтра) от 1,12 В RMS. Теоретический выход на частоте 20 кГц превышает 9,75 В RMS, но это никогда не происходит, потому что на частоте 20 кГц все записи будут на 15-20 дБ ниже уровня на частоте 1 кГц (см. АЧХ на рис. 2).

Это означает, что фактический уровень выходного сигнала на частоте 20 кГц обычно составляет в лучшем случае около 1 В RMS. Тем не менее, если усиление второго каскада увеличить слишком сильно, существует риск клиппинга. Это возможность маловероятна в связи с характером музыки - очень мало основной частоты любого инструмента (кроме синтезатора) выше 1 кГц, и большинство гармоник скатываются естественным образом на 3-6 дБ на октаву выше 2 кГц,– но она должна обязательно учитываться.

Одним из факторов, который часто упускается из виду в фонокорректорах, является емкостная нагрузка на выходе операционного усилителя на высоких частотах. Это устранено в данной конструкции, а так как NE5532 и OPA2134 могут с легкостью управлять нагрузкой в 600 Ом, то резистор 820/750 Ом изолирует выходной каскад от любой емкостной нагрузки. Первый каскад имеет 10 кОм в сочетании с конденсатором, поэтому емкостная нагрузка не является проблемой.

Каждый ОУ должен быть зашунтирован электролитическими конденсаторами 10 мкФ х 25 В от каждого плеча питания на землю и конденсаторами емкостью 100 нФ между выводами питания.

Заметим, что при использовании звукоснимателя с подвижной катушкой, должен быть использован повышающий трансформатор или предварительный усилитель со сверхнизким уровнем шума. Эта схема предназначена для использования со стандартным подвижным магнитом.

Зависимость уровня сигнала от частоты

Существует очень мало информации в сети и других местах, чтобы дать любому человеку представление о том, на каком уровне они должны ожидать звук на любой частоте. Изображение на рис. 2 было захвачено с использованием «Visual Analyzer» – одной из многих доступных компьютерных программ на основе быстрого преобразования Фурье. Сигнал был взят из FM-тюнера – вы можете увидеть резкий спад частотной характеристики выше 15 кГц и пилот-тон на частоте 19 кГц, используемый для декодирования 38 кГц FM-поднесущей. Захват был снят с австралийской "альтернативной" радиостанции, так что включает в себя несколько различных жанров музыки, а также речь.


Рис. 2. Типичная АЧХ

Захват был настроен для удержания максимального уровня, обнаруженного за время выборки (более 2-х часов), так что представляет собой самый высокий уровень, записанный по все полосе частот. Коррекция не использовалась на принятом сигнале, захватывался непосредственно эфирный сигнал. Хотя все выше 15 кГц удаляется, общая тенденция отчетливо видна. В то время, как всегда будут отклонения и исключения с различными музыкальными стилями, общая тенденция действует в широком диапазоне музыкальных стилей.

"Эталонный" уровень -9 дБ на частоте 1 кГц. Максимальные пиковые уровни наблюдаются между 30 Гц и 100 Гц, А уровень между 200 Гц и 2 кГц является достаточно «плоским», показывая примерно 3 дБ падения в границах этого диапазона частот. Наблюдается спад с крутизной 6 дБ в октаву в диапазоне 2-4 кГц, за которам следует ослабление в 10 дБ в диапазоне 4-8 кГц.

Больший интерес представляет амплитуда самых высоких пиков, потому что перегрузка будет иметь место на пиках, а не средних уровнях. На 10 кГц и чуть выше, есть пики при -18 дБ и некоторые дополнительные пики (-24 дБ) на частоте чуть ниже 15 кГц.

Исходя из этого, разумно ожидать, что худшем случае уровень сигнала на частотах выше 15 кГц не будет превышать -30 дБ, и это на 21 дБ ниже уровня на частоте 1Гц (чуть меньше, чем 1/10). Поэтому звукосниматель с выходом 5 мВ на эталонной частоте 1кГц не будет иметь больше 5 мВ на любой частоте около 20 кГц – это самый высокий уровень, которого мы можем ожидать.

При использовании рекомендуемых значений компонентов для эквалайзера RIAA максимально возможный уровень сигнала на выходе второй ступени составляет около 1 В RMS – довольно хорошо в пределах возможностей предложенных операционных усилителей. Даже если максимальный уровень будет 50 мВ (тот же результат на 20 кГц как и на 1 кГц), второй каскад по-прежнему будет ниже уровня перегрузки.

Сложная форма кривой RIAA - компромисс, сложившийся из необходимости получить наилучшее качество воспроизведения из технически несовершенных устройств механической грамзаписи .

Первые серийные пластинки, записанные по этой схеме частотных предыскажений, были выпущены компанией RCA Victor в августе 1952 года . В июне 1953 года схема RCA была одобрена Национальной ассоциацией телерадиовещателей США (NARTB) в качестве национального стандарта; выбор NARTB поддержали другие отраслевые институты, в том числе (RIAA) . К 1956 году новый стандарт, за которым закрепилось название «кривой RIAA», вытеснил конкурирующие форматы и захватил рынки США и Западной Европы. В 1959 году кривая RIAA была одобрена, а в 1964 году стандартизована Международной электротехнической комиссией . В 1972 году стандарт в редакции МЭК был принят в СССР. В 1976 году МЭК видоизменила стандартную кривую воспроизведения RIAA в области низких частот; нововведение встретило ожесточённую критику и не было принято промышленностью . В XXI веке подавляющее большинство производителей предусилителей-корректоров следует первоначальному стандарту кривой RIAA без изменений, введённых МЭК в 1976 году .

Математическое описание

АЧХ записи

V x (ω) ∝ 1 + (ω T 2) 2 1 + (ω T 3) 2 1 + (ω T 1) 2 {\displaystyle V_{x}(\omega)~\propto ~{\frac {{\sqrt {1+(\omega T_{2})^{2}}}{\sqrt {1+(\omega T_{3})^{2}}}}{\sqrt {1+(\omega T_{1})^{2}}}}} , V x (f) ∝ 1 + (f / f 2) 2 1 + (f / f 3) 2 1 + (f / f 1) 2 {\displaystyle V_{x}(f)~\propto ~{\frac {{\sqrt {1+(f/f_{2})^{2}}}{\sqrt {1+(f/f_{3})^{2}}}}{\sqrt {1+(f/f_{1})^{2}}}}} ,

Где V x {\displaystyle V_{x}} - колебательная скорость смещения канавки, f {\displaystyle f} и ω {\displaystyle \omega } - частота и угловая частота сигнала, а T 1 {\displaystyle T_{1}} , T 2 {\displaystyle T_{2}} и T 3 {\displaystyle T_{3}} - специфические именно для стандарта RIAA постоянные времени , определяющие частоты среза , , . В литературе используются разные способы нумерации этих частот и постоянных времени; в приведённых формулах они пронумерованы в хронологическом порядке внедрения их в производство ( f 1 {\displaystyle f_{1}} - 1926 год , f 2 {\displaystyle f_{2}} - 1938 год , f 3 {\displaystyle f_{3}} - 1948 год ):

АЧХ воспроизведения

Обратное преобразование напряжения на выходе электромагнитного звукоснимателя, которое пропорционально колебательной скорости, в выходное напряжение предусилителя-корректора U {\displaystyle U} выполняется «функцией RIAA». Стандартный фильтр RIAA эквивалентен последовательному соединению двух фильтров нижних частот первого порядка (знаменатель) и одного дифференциатора (числитель) :

U (ω) ∝ 1 + (ω T 1) 2 1 + (ω T 2) 2 1 + (ω T 3) 2 {\displaystyle U(\omega)~\propto ~{\frac {\sqrt {1+(\omega T_{1})^{2}}}{{\sqrt {1+(\omega T_{2})^{2}}}{\sqrt {1+(\omega T_{3})^{2}}}}}} (2) , V x (f) ∝ 1 + (f / f 1) 2 1 + (f / f 2) 2 1 + (f / f 3) 2 {\displaystyle V_{x}(f)~\propto ~{\frac {\sqrt {1+(f/f_{1})^{2}}}{{\sqrt {1+(f/f_{2})^{2}}}{\sqrt {1+(f/f_{3})^{2}}}}}} ,

с теми же, что и в АЧХ записи, значениями постоянных времени и частот. Отклонение АЧХ реальных устройств от стандарта не нормируется исходя из предположения, что такое отклонение может быть скорректировано темброблоком усилителя . Целевое значение предельного отклонения АЧХ от стандарта, принимаемое при разработке высококачественных предусилителей-корректоров, составляет ±0,1 дБ .

АЧХ канала воспроизведения («функция RIAA») всегда сосредоточена в предусилителе-корректоре. Эти предусилители практически непригодны для воспроизведения абсолютного большинства «патефонных» пластинок на 78 об/мин из-за спада АЧХ на средних и высоких частотах . Звучание таких пластинок получается тусклым, лишённым обертонов . При воспроизведении пластинок, записанных электрическими рекордерами первого поколения с особо низкой f 1 {\displaystyle f_{1}} , этот эффект усугубляется дополнительным подъёмом нижних частот .

Область определения и нормирование

Обе формулы определены в частотном диапазоне от 20 Гц до 20 кГц; за его пределами АЧХ не регламентируется . Формальная экстраполяция за пределы звукового диапазона показывает, что с уменьшением частоты ниже 20 Гц модуль АЧХ записи асимптотически приближается к единице, а с ростом частоты выше 20 кГц он растёт бесконечно, прямо пропорционально частоте. В реальных рекордерах, помимо фильтров записи RIAA, неизбежно присутствуют не предусмотренные стандартом фильтры, которые блокируют прохождение постоянного тока, инфразвуковых , ультразвуковых и радиочастот на приводы резца и не влияют на передачу звуковых частот . Например, в наиболее распространённом усилителе записи Neumann SAL 74B высокочастотные помехи отсекаются фильтром Баттерворта второго порядка с частотой среза 49,9 кГц . Вносимое им затухание в звуковом диапазоне, менее 0,1 дБ на 20 кГц, неразличимо на слух и не требует какой-либо компенсации в канале воспроизведения .

На практике обе формулы всегда исчисляются в децибелах и нормируются относительно частоты 1 кГц. На этой частоте нормированные значения АЧХ и записи, и воспроизведения равны 0 дБ ; нормированное значение АЧХ воспроизведения на частоте 20 Гц составляет +19,274 дБ (усиление в 9,198 раз относительно уровня на 1 кГц), а на частоте 20 кГц оно падает до −19.62 дБ (ослабление в 9,572 раз) . Таким образом, коэффициенты усиления предусилителя RIAA на частотах 20 Гц и 20 кГц различаются на 39 дБ, или в 88 раз. Распространённое утверждение о том, что на частотах f 1 {\displaystyle f_{1}} и f 2 {\displaystyle f_{2}} нормированная АЧХ воспроизведения принимает значения +3 дБ и −3 дБ, не верно . Оно справедливо для одиночных фильтров первого порядка, но не для цепи последовательно соединённых фильтров с достаточно близкими частотами среза. Точные значения функции RIAA на f 1 {\displaystyle f_{1}} и f 2 {\displaystyle f_{2}} равны соответственно +2,648 дБ и −2,866 дБ .

Предназначение частотной коррекции

Особенности долгоиграющей звукозаписи

Классический технологический цикл производства стереопластинок начинается с нарезания оригинала грамзаписи в тонком слое нитроцеллюлозного лака, нанесённого на алюминиевый диск . Треугольный в плане , принудительно нагретый до 200-300 °С сапфировый резец, закреплённый на массивном тангенциальном «тонарме» рекордера, управляется двумя лёгкими, но мощными электромагнитными приводами, охлаждаемыми струями воздуха или гелия . Частотные искажения, собственный резонанс и нелинейность подвижной системы рекордера эффективно подавляются цепью электромеханической обратной связи, разработанной в конце 1930-х годов и ставшей де-факто отраслевым стандартом к середине 1960-х годов . Резец перемещается от края к центру диска строго по его радиусу, а ось симметрии резца всегда направлена по касательной к нарезаемой канавке .

Сигналы обоих стереоканалов кодируются поперечным (горизонтальным) смещением резца . Смещение внешней, ближней к краю пластинки, стороны канавки соответствует правому каналу, внутренней стороны - левому . При записи монофонического (синфазного) сигнала изменяется только поперечное смещение канавки, а её ширина и глубина остаются неизменными. Смещение резца в глубину лакового слоя и обратно соответствует разности сигналов левого и правого каналов. В ходе сведения фонограммы амплитуда этой составляющей ограничивается, чтобы избежать скачков иглы . Расстояние между канавками варьирует от 200 до 65 мкм (130-390 канавок на дюйм) , что на скорости 33⅓ об/мин обеспечивает длительность воспроизведения одной стороны пластинки от 13 до 40 минут . Предельное поперечное смещение канавки в 1950-е годы ограничивалось величиной 25 мкм; по мере усовершенствования звукоснимателей оно постепенно увеличивалось . В стандарте СССР 1972 года предельное горизонтальное смещение канавки составляло 40 мкм, предельное вертикальное - не более 20 мкм ; к 1978 году допустимое поперечное смещение выросло до 50 мкм . В XXI веке ширина немодулированной канавки практически никогда не опускается ниже 50 мкм; на громких фрагментах канавка расширяется до 80-90 мкм, а при записи синглов на 45 об/мин ширина канавки может достигать 125 мкм .

Верхняя граничная частота записи определяется высокочастотным резонансом резца и не превышает 25 кГц . На частотах выше этой границы амплитуда записываемых колебаний спадает столь быстро, что можно полагать, что записанный сигнал не содержит полезных ультразвуковых составляющих. Исключение - квадрофонические пластинки системы CD-4, в которых спектр полезного сигнала простирается до 45 кГц . Лаковые оригиналы этих пластинок нарезались обычными резцами при замедленной в два раза скорости вращения диска с замедленной в два раза магнитной фонограммы. Предельная частота записи составляла 22,5 кГц, но при воспроизведении на стандартной скорости она преобразовывалась в 45 кГц .

Геометрические ограничения при записи

Перемещение резца при нарезании канавки должно укладываться в три ограничения - по предельной амплитуде смещения канавки, по её предельной колебательной скорости и по предельному ускорению . Первое из них действует в равной мере на всей площади пластинки, отведённой для записи. Ограничения скорости и ускорения устанавливаются для наихудшего случая - канавок, ближайших к центру пластинки . Чем ближе канавка к центру, тем выше вероятность перегрузок и искажений, и наоборот: чем дальше канавка от центра, тем меньше плотность записи колебаний, что делает возможным тщательно рассчитанное превышение пределов скорости и ускорения .

Смысл ограничения амплитуды смещения очевиден: даже незначительное превышение этого предела, не приводящее к разрушению стенки между канавками, может эту стенку деформировать и породить явно слышимый копир-эффект . Запись сигнала с максимальной амплитудой смещения обеспечивает наилучшее отношение сигнал-шум , но она технически возможна лишь в области низких частот. На рубеже не более 1 кГц в силу вступает другое ограничение - по предельной скорости смещения канавки. Несоблюдение этого предела во время записи приводит к тому, что задние грани резца повреждают стенки канавки, нарезанные его передними кромками . При воспроизведении канавки, записанной с превышением скорости, её эффективная ширина сужается, возникает эффект выдавливания иглы из канавки (пинч-эффект) и как следствие - нелинейные искажения . Поэтому предельная скорость смещения канавки всегда ограничивается: в советском ГОСТ 7893-72 уровнем 10 см/с для монофонических и 7 см/с для стереофонических записей ; к 1978 году предел увеличили до 14 см/с . Номинальный уровень записи («0 дБ»), относительно которого нормируется усиление воспроизводящего тракта, соответствует пиковой скорости 8 см/с; на практике его часто приравнивают к среднеквадратической скорости в 5 см/с . В мировой практике встречались пластинки с пятикратным превышением этого порога - 38 см/с (+14 дБ) на частоте 2 кГц, что соответствует ускорению иглы звукоснимателя в 487 .

На высоких частотах в силу вступает третий ограничивающий фактор, связанный именно с ускорением - предельная кривизна канавки. Для того, чтобы игла звукоснимателя могла отследить высокочастотное смещение канавки, радиус этого смещения должен быть не меньше радиуса острия иглы. Если не учитывать это ограничение при записи, то игла будет проскакивать мимо высокочастотных впадин и гребней канавки и необратимо повреждать их . Для стандартных круглых игл с радиусом острия 18 мкм этот эффект («ошибка неогибания» , англ. tracing error ) может проявляться уже на 2 кГц, для игл с узким эллиптическим остриём - на 8 кГц . Нормированный в СССР предел ускорения составлял вначале 25 10 4 см/с 2 (255 G), а к 1978 году вырос до 41 10 4 см/с 2 (418 G) .

Принцип предыскажений

Существуют два основных режима записи гармонического сигнала на лаковый диск. В режиме постоянства амплитуд смещения амплитуда смещения канавки зависит только от амплитуды записываемого электрического сигнала и не зависит от его частоты. При этом скорость изменения смещения растёт прямо пропорционально частоте сигнала и рано или поздно достигает неприемлемо высоких значений. В режиме постоянства амплитуд колебательной скорости от частоты не зависит амплитуда скорости изменения смещения канавки, а амплитуда смещения обратно пропорциональна частоте сигнала. Наиболее распространённые электромагнитные звукосниматели чувствительны именно к колебательной скорости, поэтому воспроизведение пластинок, записанных в этом режиме, не требует какой-либо частотной коррекции. Однако такие записи отличаются неприемлемо высоким относительным уровнем шума на средних и особенно высоких частотах . Из-за этих недостатков ни один из двух режимов не применим в чистом виде. Все практические системы звукозаписи сочетают участки обоих режимов: на низких частотах рекордер работает в режиме постоянства амплитуд смещения, на средних - в режиме постоянства колебательной скорости. Переход от одного режима к другому происходит в особом фильтре предыскажений , а частота раздела выбирается так, чтобы вписать в заданные технологией пределы максимум полезного сигнала.

Идеального решения задачи не существует, так как всякая музыкальная или речевая программа имеет своё, уникальное, спектральное распределение энергии и пиковых амплитуд сигнала . Не существует и эталона такого распределения, которым можно было бы оценить эффективность той или иной настройки фильтра . На практике используется простейшая модель спектра, в которой в диапазоне 20 Гц…1 кГц пиковые амплитуды постоянны, а в диапазоне 1…20 кГц они снижаются со скоростью примерно 10 дБ на октаву . Доля высокочастотных составляющих в этой модели столь мала, что ограничение предельного ускорения теряет смысл. Напротив, с точки зрения лучшего соотношения сигнал-шум целесообразно увеличить уровень высокочастотного сигнала, чтобы максимально полно использовать динамический диапазон записи . Наклон АЧХ в 10 дБ на октаву простыми фильтрами воспроизвести невозможно; на практике используются лишь комбинации фильтров первого порядка, каждый из которых реализует наклон в 6 дБ на октаву . Важна не точность «вписывания» условной модели спектра в условную модель пластинки, но точное, зеркальное соответствие АЧХ каналов записи и воспроизведения .

По той же причине - необходимость подавить низкочастотные помехи воспроизведения - дополнительно поднимается и уровень записи на самых низких частотах (20…50 Гц в стандарте RIAA) . Таким образом, оптимальная АЧХ фильтра предыскажений долгоиграющей записи имеет в звуковой области три точки перегиба: две в области средних частот и одну низкочастотную .

Исторический очерк

Частотная коррекция до перехода на долгоиграющую запись

Абсолютно все пластинки в истории были записаны с искажениями спектра исходного сигнала . Вначале это были естественные, неизбежные и неустранимые частотные искажения чисто механических рекордеров . Этот этап развития технологии достиг вершины в середине 1920-х годов ; тогда же начался переход от непосредственной записи акустических колебаний к электрическому усилению записываемого сигнала . Разработчики первого электрического рекордера Bell Labs Джозеф Максфилд и Генри Гаррисон, понимавшие невозможность использования режимов постоянства амплитуды и постоянства колебательной скорости в чистом виде, ввели в схему фильтр предыскажений с частотой раздела низкочастотной и среднечастотной области ( f 1 {\displaystyle f_{1}} ) 200 Гц . Для частот выше 4 кГц они рекомендовали переход к режиму постоянного ускорения, но в несовершенной аппаратуре 1920-х годов он востребован не был . Не сразу, постепенно, необходимость преднамеренных искажений спектра осознали и другие конструкторы и звукоинженеры .

В 1930-е годы большинство производителей применяли как минимум двузвенную частотную коррекцию, аналогичную схеме Максфилда и Гаррисона, а дополнительный подъём АЧХ на высоких частотах обеспечивали стандартные конденсаторные микрофоны конструкции Уэнта . Рынок США захватила патентованная система записи Western Electric ; британская EMI , а за ней и большинство европейских производителей взяли на вооружение схему «Блюмлейн 250» (англ. Blumlein 250Hz ) с частотой раздела 250…300 Гц .

Первые долгоиграющие пластинки

Компания, работавшая над новинкой с 1930-х годов, всерьёз рассчитывала стать автором и владельцем нового мирового стандарта . Ей действительно удалось сделать стандартом скорость вращения диска (33⅓ оборота в минуту), геометрическую спецификацию канавок, она изобрела и ввела в оборот само обозначение . Схему частотной коррекции долгоиграющих пластинок Columbia выбрала по рекомендации своего старого партнёра - Национальной ассоциации вещателей (NAB) . Точное техническое описание этой схемы никогда не публиковалось; из опубликованных графиков следует, что NAB использовала АЧХ с перегибами на 1590 мкс (100 Гц), 350…400 мкс (400…450 Гц) и 100 мкс (1600 Гц) . С инженерной точки зрения это было удачное компромиссное решение, весьма близкое к будущему стандарту RIAA и почти не отличимое от него на слух .

К 1952 году фирменное название кривой Columbia (англ. LP Curve ) стало в США именем нарицательным . Эксперты отрасли были уверены, что именно эта схема станет стандартом отрасли, но войну форматов Columbia проиграла . Главным недостатком её схемы было то, что она была оптимизирована для пластинок диаметром 406 мм , которые не были приняты рынком. Для завоевавших рынок пластинок диаметром 305 мм , более чувствительных к перегрузкам на высоких частотах, схема Columbia подходила хуже . Выбранное компанией значение f 2 {\displaystyle f_{2}} (1600 Гц) было слишком низко, что лишь усугубляло эти искажения .

Война форматов

Вслед за Columbia на рынок долгоиграющих пластинок вышли конкуренты, использовавшие альтернативные схемы частотной коррекции. Об этих недолговечных технических решениях, никогда не публиковавшихся в виде полноценных технических описаний, сохранились лишь фрагментарные, неточные и часто неверные сведения. Маркировка пластинок этого периода запутана или вовсе недостоверна ; действительную АЧХ предыскажений, применённую при их записи, можно лишь оценить на слух. Например, компания Decca , в 1950 году начавшая продажи долгоиграющей версии своей патентованной системы ffrr , в течение трёх лет опубликовала четыре различных графика АЧХ . Однако, по мнению Копленда, в действительности до перехода на стандарт RIAA Decca применяла лишь две схемы - «Блюмлейн 500» и её вариант с подъёмом высоких частот выше 3,18 кГц . Всего же в послевоенное десятилетие на статус стандарта претендовали не менее девяти различных систем . Граница раздела низкочастотной и среднечастотной области варьировала от 250 до 800 Гц, подъём высоких частот составлял от 8 до 16 дБ на 10 кГц . Кроме того, существовали не предназначенные для тиражирования «фирменные стандарты» крупных радиостанций, архивов и библиотек - например, различные службы BBC использовали три разные схемы предыскажений вплоть до 1963 года . Отраслевые (AES , 1950 ) и международные (CCIR , 1953 ) организации, как могли, «управляли процессом», предлагая собственные решения. Последний из этих несостоявшихся стандартов, германский DIN 45533 , был одобрен в июле 1957 года и так и не дошёл до серийного производства .

Множество несовместимых форматов было на руку лишь производителям аппаратуры, предлагавшим слушателям сложные темброблоки для исправления частотных искажений. Производители пластинок, напротив, были заинтересованы в скорейшей стандартизации частотной коррекции. В 1953 году, когда стало очевидным, что отрасль не собирается принимать схему коррекции NAB и Columbia, Национальная ассоциация телерадиовещателей (NARTB) провела сравнительный анализ схем частотной коррекции, использовавшихся в США, и составила на их основе идеальную «среднестатистическую» АЧХ записи и воспроизведения . Из всех реально используемых схем к ней лучше всего подходила АЧХ записи компании RCA Victor , внедрённая в производство в августе 1952 года под фирменной маркой New Orthophonic . Её отклонение от среднестатистического идеала во всём звуковом диапазоне не превышало ±1,5 дБ . RCA Victor, так же как и Columbia, использовала кривую записи с тремя перегибами, но оптимизированную для скорости 33⅓ об/мин. Именно схема RCA Victor, c подъёмом низких частот на f 3 {\displaystyle f_{3}} =50,05 Гц, и была выбрана в качестве национального стандарта США .

Внедрение

В 1953-1954 годы предложенное NARTB решение было последовательно признано американскими Ассоциацией производителей телерадиоаппаратуры (RETMA) и Обществом звукоинженеров (AES). После того, как в мае 1954 года Американская ассоциация звукозаписывающих компаний (RIAA) утвердила его в качестве национального отраслевого стандарта США, за ним закрепилось название «кривой RIAA» или «частотной коррекции RIAA» (англ. RIAA curve, RIAA equalization ). В 1955 году кривая RIAA стала национальным стандартом Великобритании и получила предварительное одобрение Международной электротехнической комиссии ; тремя годами позже МЭК официально признал кривую RIAA в ранге стандарта (Публикация МЭК-98-1958, ныне IEC 60098).

Переход промышленности США на кривую RIAA был стремительным, по крайней мере на словах . Понимая, что продать запасы старых, нестандартных пластинок в новых условиях будет весьма затруднительно, производители поспешили декларировать соответствие новому стандарту

Если вы посмотрите на дорожки грампластинки с помошью увеличительного стекла, вы увидите, что эти дорожки отнюдь не являются безупречно параллельными друг другу. Их края колеблются и извиваются из стороны в сторону, иногда оказываясь в опасной близости с соседними дорожками. Эти метания определяются амплитудой низкочастоных составляющих сигнала и именно они ограничивают плотность записи, а следовательно время звучания пластинки.

Запись высокочастотных сигналов связана с нюансами другого рода. Если амплитуда высокочастотных деталей записи будет невелика, то уровень этих деталей окажется сравним с уровнем собственного шума пластинки. Кроме того, высокочастотные колебания хлопотно считывать - механические элементы системы считывания обладают массой, то есть инертны, что накладывает ограничения на частоту колебаний, которые можно считать и преобразовать в электрический сигнал, и они же не являются абсолютно упругими телами, то есть часть считанной высокочастотной информации не дойдёт от поверхности пластинки до пункта назначения - датчика, а демпфируется в механике - поэтому качественные держатели игл стремятся делать из максимально лёгких и твёрдых материалов, таких как бериллий. Кроме прочего, чем легче элемент, тем выше его собственные резонансные частоты, а сдвиг частот резонансов механических элементов звуковозпроизводящего тракта подальше за пределы слышимой области - давно знакомая разработчикам проблема.

Кажется очевидным, что для восстановления на выходе сигнала в максимально близком к исходному состоянию виде кривые преобразований, проводимых при записи и воспроизведении, должны а) друг другу соответствовать, быть зеркальными отражениями друг друга и б) быть регламентированы соответствующим стандартом, чтобы любую пластинку можно было воспроизвести на любом проигрывателе. Это не было очевидным, однако, около четверти века - до 1950х годов производители пластинок реализовывали подобную частотную коррекцию "кто во что гаразд", что теперь выливается в головную боль для тех, кто хочет услышать старую пластинку в "правильном" качестве.

Строго говоря, на нелинейность АЧХ пластинки обратили внимание ещё в 1926 году - практически сразу после появления электрозаписи, в 1930 всплыл вопрос о том, что делать с заметным подъёмом в области средних частот, привносимым конденсорными микрофонами, а к середине 1930х коррекцию воспроизводимого сигнала уже вовсю практиковали - например, на радио. Соответственно, и при производстве пластинок начала использоваться коррекция. Но только в 1940х возникло предчуствие необходимости единого стандарта, которое пересло из предчувствия в требование времени на границе 1940х/1950х - когда маркетинговые битвы Columbia vs RCA с форматов носителя и скорости записи перекинулись и на схемы коррекции, омрачая анархическим умножением энтропии безоблачное будущее звукозаписывающей индустрии.

С 1942 работу над стандартом начала NAB (National Association of Broadcasters) и в 1949 году рекомендации NAB начали использоваться при производстве пластинок; после презентации в 1948 году Columbia обнародовала свою схему коррекции; в 1949 RCA ответила своей "New Orthophonic" схемой эквализации, детали которой были опубликованы в 1953. В итоге для разработки единого стандарта в 1952 году была создана RIAA (Американская ассоциация звукозаписывающих компаний). Её усилиями к 1955-1956 годам сформировался стандарт, который с незначительнми дополнениями применяется до сего дня. Курьезно, но теперь на сайте RIAA техническая стандартизация стоит на последнем месте в списке задач, а на первом месте стоит - правильно, борьба с пиратством. Стандарты стандартами, а самое чувствительное место в организме - все-таки кошелёк.

Но это была присказка: так сказать, общепринятая версия событий, а теперь - .

Статья опубликована 2011-09-21
Автор статей или переводчик — Дмитрий Шумаков, если не указано иное. При цитировании просим поставить ссылку на магазин пластинок сайт
Оставьте комментарий первым!
Включайся в дискуссию
Читайте также
Перенос WordPress на другой хостинг, домен или денвер
Сброс Mozilla Firefox – решение большинства проблем Как сбросить настройки в мозиле
Программы для выключения компьютера скачать