Подпишись и читай
самые интересные
статьи первым!

Авиационные бортовые приборы. Системы самолета

Под навигационным комплексом понимают совокупность бортовых измерительных средств и вычислителей, позволяющих определять местоположение и скорость самолета (судна) относительно Земли. Ни один из существующих навигационных измерителей не может полностью решить эти задачи, так как каждый из них в отдельности не обеспечивает необходимой точности, помехозащищенности или надежности.

Задачи, решаемые навигационным комплексом, многообразны. Среди них одной из важнейших является счисление пути, обеспечивающее непрерывное измерение координаты объекта. Основным недостатком систем счисления является ухудшение точности определения координат с увеличением времени работы.

Поэтому для получения требуемой точности счислимые координаты необходимо непрерывно или периодически корректировать на основании информации, поступающей от радиотехнических измерителей, т. е. осуществлять комплексную обработку данных.

Структурная схема типового навигационного комплекса самолета приведена на рис. 22.20 . Основу этого комплекса составляет инерциальная навигационная система (ИНС) на гиростабилизированной платформе. Она измеряет как угловое положение самолета (углы крена, тангажа, рыскания и их производные), так и составляющие ускорения и скорости. Скорость самолета измеряется также с помощью ДИСС и датчика воздушной скорости, входящего в состав системы воздушных сигналов (СВС). В качестве вспомогательного измерителя курса используется система курсовертикали (СКВ). Высота и скорость ее изменения измеряются с помощью радиовысотомеров (РВ). Сигналы этих устройств обрабатываются в вычислительном устройстве, являющемся частью распределенной бортовой вычислительной системы. В качестве систем коррекции координат местоположения самолета используются данные радиотехнических систем ближней РСБН) и дальней (РСДН) навигации (таких, как «Омега», «Лоран-С» или системы с использованием ИСЗ), бортовых РЛС,корреляционно-экстремальных систем, а также данные, получаемые с выхода других измерителей, например астрономических ориентиров, оптических или электроннооптических визиров.

В навигационных комплексах с более высокой степенью интеграции оборудования используются обратные связи (показаны на рис. 22.20 пунктирными линиями). За счет этих связей обеспечиваются коррекция положения гироплатформы ИНС, предварительная настройка ДИСС по данным датчика воздушной скорости или ИНС, установка визиров в предполагаемое местоположение ориентиров и т. п. Так как системы, входящие в навигационный комплекс, определяют навигационные параметры в собственной системе координат, в алгоритмах навигационного вычислительного устройства предусмотрена процедура пересчета данных этих систем в основную систему координат, в которой осуществляется счисление пути.

Навигационный комплекс является составной частью пилотажно-навигационного комплекса (ПНК), который включает в себя также систему автоматического управления самолетом и систему индикации и отображения пилотажно-навигационной информации. ПНК предназначен для навигации и пилотирования самолета на всех этапах полета. В круг задач, решаемых ПНК, помимо непрерывного определения координат местоположения самолета, счисления пути и его коррекции входят программирование маршрута полета, вычисление и передача в САУ управляющих сигналов, выдача информации системам отображения и индикации, автоматический контроль исправности бортовых устройств и систем ПНК, а также автоматическая стабилизация и управление самолетом во всех режимах полета.

Навигационные комплексы морских судов имеют схожую структуру. На рис. 22.21 приведена структурная схема интегрированного навигационного комплекса «Data Bridge» норвежской фирмы «Norcontrol», предназначенного для автоматизации судовождения и предотвращения столкновений. Счисление пути в этом комплексе осуществляется по данным лага и гирокомпаса. В качестве систем коррекции координат местоположения используются навигационные системы Декка (непрерывная коррекция в условиях прибрежного плавания), «Омега», «Лоран-С», а также спутниковая навигационная система «Транзит».

В бортовой ЭВМ реализуются соответствующие алгоритмы преобразования координат и комплексной обработки информации всех навигационных датчиков, а также вырабатываются необходимые сигналы для систем автоматического управления движением судна и системы индикации и отображения обстановки в районе плавания. В систему индикации вводится и радиолокационное изображение, полученное судовой РЛС.

Запишите векторно-матричное уравнение линейного формирующего фильтра, моделирующего траекторию подвижного объекта, и изобразите его структурную схему.

Каким образом можно описать маневрирование движущихся объектов?

В каких случаях уравнение измерений объекта будет линейным?

Когда для решения задачи фильтрации можно воспользоваться результатами теории оценок параметров?

По аналогии с уравнениями (22.21), (22.22) получите уравнение оценки параметров квадратичной траектории и изобразите структурную схему соответствующего нерекуррентного фильтра.

Что представляет собой эффект расходимости оценок в рекуррентных фильтрах и какими способами его можно предотвратить?

Пользуясь выражениями (22.45), (22.46), найдите переходную матрицу дискретной системы при условии, что соответствующая непрерывная система имеет матрицу

Запишите выражение для корреляционной матрицы ошибок фильтрации для расширенной системы, описываемой уравнениями (22.52), (22.53).

Укажите основное условие, при выполнении которого комплексирование двух измерительных систем эффективно.

В чем заключается принцип инвариантности при комплексировании и как он реализуется при использовании программных методов обработки?

Общее описание вычислительной системы самолетовождения

Вычислительная система самолётовождения (FMS) предназначена для решения задач 3-хмерной навигации самолёта по маршруту, в районе аэропорта, а также выполнения неточных заходов на посадку.

Вычислительная система самолётовождения (FMS) обеспечивает:

  • выдачу управляющих сигналов в САУ для автоматического управления полётом по заданному маршруту;
  • решение задач навигации по заданному маршруту полёта, выполнение неточных заходов на посадку в режиме вертикальной навигации;
  • автоматическую и ручную настройку частоты бортовых радионавигационных систем и систем инструментальной посадки;
  • управление режимами и диапазоном системы предупреждения столкновения самолетов в воздухе Т2САS;
  • ручную настройку бортовых систем УКВ и КВ радиосвязи;
  • управление функцией кода в бортовых ответчиках системы ОрВД;
  • ввод (модификация) запасного аэропорта.

Функция FMS заключается в передаче в режиме реального времени навигационной информации путём отображения маршрута, выбранного (созданного) экипажем, а также выбранных из базы данных стандартных процедур взлёта и посадки. FMS осуществляет расчёт данных горизонтального и вертикального профиля полёта по маршруту.

Для выполнения функций навигации FMS взаимодействует со следующими системами:

  • инерциальная навигационная система IRS (3 к-та);
  • глобальная навигационная спутниковая система (GNSS) (2 к-та);
  • система воздушных сигналов (ADS) (3 к-та);
  • КВ радиостанция (2 к-та);
  • УКВ радиостанция (3 к-та);
  • ответчик УВД (XPDR) (2 к-та);
  • система измерения дальности (DME) (2 к-та);
  • система всенаправленного и маркерного радиомаяков (VOR) (2 к-та);
  • инструментальная система посадки (ILS) (2 к-та);
  • система автоматического радиокомпаса (ADF);
  • система предупреждения экипажа (FWS);
  • система предупреждения столкновения самолетов в воздухе (Т2САS);
  • система электронной индикации (CDS);
  • система автоматического управления (AFCS).

Передняя панель FMS имеет многофункциональный пульт управления и индикации (MCDU).

Рисунок 1. Описание передней панели MCDU

FMS передает сигналы управления на автопилот (AFCS) для управления самолётом:

  • в горизонтальной плоскости для осуществления навигации на маршруте и в зоне аэропорта (горизонтальная навигация LNAV);
  • в вертикальной плоскости для взлёта, набора высоты, полёта на крейсерской скорости, снижения, захода на посадку и ухода на второй круг.

FMS передает в CDS местоположение самолёта, маршрут полёта, информацию о текущем навигационном режиме и т.д. Эти данные отражаются на навигационном индикаторе (ND) или основном индикаторе (PFD).

Экипаж использует пульт управления полётом (FCP) для выбора режимов полёта и MCDU, входящий в состав FMS, для ввода плана полёта и других данных о полёте. Экипаж использует многофункциональный пульт управления и индикации для ввода и редактирования данных с помощью клавиатуры.

FMS является единственным средством управления ответчиками системы управления воздушного движения (ATC) и подсистемой предупреждения столкновения в воздухе (TCAS). FMS — основное средство управления радионавигационными системами и резервное средство настройки радиосвязного оборудования.

FMS имеет следующие базы данных:

  • навигационная база данных;
  • специальная база данных (маршруты компании);
  • пользовательская база данных;
  • база магнитных склонений;
  • база характеристик самолёта.

Перечисленные выше базы данных и файл конфигурации обновляются при выполнении процедур обслуживания FMS через терминал MAT (системы технического обслуживания), используемый как загрузчик данных ARINC 615-3. Также через MAT выполняется обновление программного обеспечения.

FMS выполняет следующие функции:

  • Разработка плана полёта;
  • Определение текущего местоположения;
  • Прогнозирование траектории полёта на снижении;
  • Горизонтальная навигация;
  • Вертикальная навигация на этапе захода на посадку;
  • Настройка радиосвязного оборудования;
  • Управление радиосредствами ATC/TCAS;
  • Управление радионавигационными средствами.

Функциональное описание FMS

На самолётах семейства RRJ установлены два CMA-9000, которые могут работать как в независимом, так и в синхронном режиме. При работе в синхронном режиме CMA-9000 осуществляют обмен результатами соответствующих навигационных вычислений. В независимом режиме каждая CMA-9000 использует результаты собственных навигационных вычислений.

Как правило, CMA-9000 функционируют в синхронизированном режиме, однако переходят в независимый режим, если при работе двух CMA-9000 имеют место следующие условия:

  • разные базы данных пользователя;
  • разные версии программного обеспечения;
  • разные навигационные базы данных;
  • ошибка связи одной из CMA-9000 при выполнении соединения;
  • различные фазы полёта более чем 5 секунд;
  • различные навигационные режимы в течение более чем 10 секунд.

При работе в независимом режиме CMA-9000 оповещает экипаж об изменении рабочих режимов. При этом на MCDU появляется соответствующая индикация IND, а на экране MCDU появляется соответствующее сообщение желтого цвета. При отказе одной из CMA-9000 в полёте другая позволяет выполнить полёт без потери функциональности.

Разработка плана полёта

FMS обеспечивает работу лётчика путём разработки полного плана полёта от пункта взлёта до пункта посадки, включая навигационное оборудование, промежуточные пункты маршрута, аэропорты, воздушные трассы и стандартные процедуры взлёта (SID), посадки (STAR), захода на посадку (APPR) и т.д. План полёта создается экипажем по пунктам маршрута и авиационным трассам с использованием дисплея MCDU или путём загрузки маршрутов авиакомпании из соответствующей базы данных.

База данных пользователя может включать в себя до 400 различных планов полёта (маршруты авиационных компаний) и до 4000 промежуточных пунктов маршрута. План полёта может включать в себя не более 199 промежуточных пунктов маршрута. FMS может выполнять обработку базы данных пользователя, не превышающей 1800 различных промежуточных пунктов маршрута.

В FMS могут быть созданы 3 плана полёта: один активный (RTE1) и два неактивных (RTE2 и RTE 3). Экипаж может вносить изменения в действующий план полёта. При изменении плана полёта создается временный план полёта. Измененный план полёта становится активным при нажатии кнопки EXEC и может быть отменён при нажатии кнопки CANCEL. Отмена ввода неактивного плана не изменяет действующий активный план (RTE1).

Экипаж имеет возможность создать пользовательскую навигационную точку, чтобы в последующем её можно было выбрать из памяти или воспользоваться в случае утраты данных. В базе данных пользователя могут храниться до 10 планов полёта пользователя и до 500 промежуточных пунктов маршрута пользователя.

Экипаж имеет возможность создать временные пункты маршрута, расположенные на участках плана полёта на пересечении радиальной линии, траверза или радиуса от выбранного места на странице FIX INFO. От введённого FIX могут создаваться не более двух радиальных линий/радиусов и не более одного траверза. CMA-9000 осуществляет расчёт предварительных данных (расчётное время прибытия (ETA) и расстояние перелёта (DTG)) с учётом профиля полёта, заданного высотного и скоростного режимов полёта и введённых экипажем параметров ветра на маршруте.

Экипаж самолёта использует CMA-9000 для ввода данных, необходимых для выполнения взлёта и полёта по маршруту (скорость принятия решения (V1), скорость подъёма передней стойки шасси (VR), безопасная скорость взлёта (V2), высоты крейсерского полёта (CRZ), взлётный вес самолёта (TOGW) и т.д.), которые используются для прогнозирования и расчёта характеристик полёта. В ходе полёта CMA-9000 используется для ввода данных захода на посадку (температура, ветер, предполагаемая конфигурация посадки и т.д.). В синхронном режиме все данные, введённые в одну CMA-9000, передаются на другую CMA-9000 с использованием шины синхронизации. CMA-9000 обеспечивает ручной ввод данных местоположения самолета на земле для выставки IRS.

Лётчику доступны следующие навигационные данные:

  • высота взлётно-посадочной полосы аэропорта назначения;
  • высота перехода и эшелон перехода, передаваемые на CDS для отражения на PFD;
  • курс по курсовому радиомаяку ILS, передаваемый на AFCS;
  • курс взлётно-посадочной полосы аэропорта отправления, передаваемый на AFCS.

FMS передаёт на CDS план полёта, соответствующую выбранному экипажем масштабу (от 5 до 640 морских миль) и типу (ARC, ROSE или PLAN) отображения.

Многорежимная навигация

Для определения местоположения самолёта оба CMA-9000 связаны интерфейсами с навигационными системами. Навигационные системы — IRS, GPS, VOR и DME — выдают навигационную информацию в FMS для определения местоположения самолёта. CMA-9000 постоянно вычисляет местоположение воздушного судна на основе информации, получаемой от GPS (DME/DME, VOR/DME, или INS) и отображает активный режим счисления на дисплеях. FMS управляет заданными навигационными характеристиками (RNP) в соответствии с этапом полёта. При превышении заданного RNP текущим ANP выдается сигнализация экипажу на MCDU.

Навигационная функция включает в себя следующие параметры, которые рассчитываются или поступают непосредственно с датчиков:

  • местоположение самолёта в текущий момент (PPOS);
  • путевая скорость (GS);
  • путевой угол (TK);
  • текущий ветер (направление и скорость);
  • угол сноса (DA);
  • расстояние бокового отклонения от курса (XTK);
  • погрешность путевого угла (TKE);
  • заданный путевой угол маршрута (DTK) или курс;
  • текущая точность навигации (ANP);
  • заданная точность навигации (RNP);
  • температура торможения (SAT);
  • воздушная скорость самолёта (CAS);
  • истинная скорость самолёта (TAS);
  • инерциальная вертикальная скорость;
  • курс (HDG), магнитный или истинный.

В основном рабочем режиме работы данные о широте и долготе поступают непосредственно от датчиков GPS многорежимных приемников (MMR) системы GNSS. Расчёт местоположения выполняется в соответствии со Всемирной геодезической системой координат WGS-84.

Приоритеты использования навигационных режимов:

  1. режим навигации GPS;
  2. режим навигации DME/DME при отказах, пропадании сигналов GPS и потере RAIM;
  3. режим навигации VOR/DME при отказах и пропадании сигналов GPS и DME/DME;
  4. режим навигации INERTIAL при отказах и пропадании сигналов GPS, DME/DME и VOR/DME.

Режимы навигации

Навигация GPS : GPS определяет непосредственное местоположение самолёта, путевую скорость, путевой угол, скорость с Севера на Юг, скорость с Востока на Запад и вертикальную скорость. Для обеспечения полноты функции автономного контроля целостности (RAIM) экипаж самолёта может деселектировать режим GPS или другого недостоверного средства навигации.

Навигация DME/DME : FMS осуществляет расчёт местоположения самолёта с использованием третьего канала приёмников DME. Если местоположение станций DME содержится в навигационной базе данных, FMS определяет местоположение воздушного судна с помощью 3-х станций DME. Рассчитанное во времени изменение местоположения позволяет рассчитать путевую скорость и путевой угол.

Навигация VOR/DME : FMS использует станцию VOR и связанную с ней DME для определения относительного курса и расстояния до станции. FMS определяет местоположение воздушного судна на основании данной информации и учитывает изменение местоположения во времени для определения путевой скорости и путевого угла.

Инерциальная навигация INERTIAL : FMS определяет средневзвешенное значение между тремя IRS. Если действует навигационный режим GPS (DME/DME или VOR/DME), FMS осуществляет расчёт вектора погрешности местоположения между местоположением, рассчитанным с помощью IRS, и текущим местоположением.

При инерциальной навигации FMS корректирует местоположение в своей памяти на основании последнего расчёта вектора сдвига для того, чтобы обеспечить плавный переход из режима GPS (DME/DME или VOR/DME) в инерционный навигационный режим. В случае отказа датчика IRS, FMS осуществляет расчёт сдвоенного смешанного местоположения INS между двумя оставшимися датчиками IRS. При повторном отказе датчика IRS FMS использует оставшийся датчик IRS для расчета местоположения INS.

Навигация методом счисления пути DR : FMS использует для расчёта местоположения самолета последние определённые данные о местоположении, TAS (истинную скорость самолёта), поступающую с ADC, введённый курс и прогноз ветровой обстановки. Экипаж самолёта может вводить в ручном режиме данные о текущем местоположении, путевой угол, путевую скорость, скорость и направление ветра.

Прогнозирование траектории

FMS прогнозирует вертикальный профиль полёта, используя истинные и прогнозируемые навигационные данные. FMS не выполняет расчёт прогнозов для неактивного маршрута и не рассчитывает вертикальный профиль.

Функция прогнозирования траектории осуществляет расчёт следующих параметров псевдо-промежуточных пунктов маршрута: точка окончания набора высоты (T/C), точка начала снижения (T/D) и завершение снижения (E/D).

Осуществляется прогнозирование следующих параметров для каждого промежуточного пункта маршрута действующего плана полёта:

  • ETA: расчетное время прибытия;
  • ETE: планируемое время полёта;
  • DTG: расстояние перелета;
  • крейсерская высота полёта.

Кроме того, ETA и DTG рассчитываются для точек входа в промежуточные пункты маршрута.

Функция прогнозирования траектории осуществляет расчёт прогнозируемого веса при посадке и оповещает экипаж самолёта в случае, если для выполнения плана полёта потребуется дополнительное топливо.

Функция прогнозирования траектории осуществляет расчёт топлива и расстояния для взлёта, набора высоты, полёта на крейсерской скорости и снижения на основании данных, содержащихся в базе данных рабочих характеристик (PDB).

На этапе расчёта данных для захода на посадку FMS осуществляет расчет скорости захода на посадку на основании данных о скорости ветра при посадке и прогнозируемой скорости Vls, которые выдаются из PDB с учётом предполагаемой конфигурации посадки и посадочного веса.

Функция прогнозирования траектории выводит сообщения на MCDU в случае неправильного набора высоты. Также при снижении и заходе на посадку в режиме вертикальной навигации FMS передаёт первое значение высоты на CDS для отражения на PFD с указанием, следует ли её придерживаться. Кроме того, когда на какой-либо промежуточной точке снижения вводится требуемое время посадки (RTA), функция прогнозирования траектории обновляет ETA до RTA и оповещает экипаж самолёта в случае несоответствия времени.

FMS отправляет данные для индикации на навигационном дисплее по протоколу ARINC 702A и в соответствии с функцией отображения карты, выбранным диапазоном и выбранным режимом карты.

Горизонтальная и вертикальная навигация

Данная функция обеспечивает горизонтальную и вертикальную навигацию совместно с автопилотом для выполнения горизонтального и вертикального плана полёта.

Горизонтальная навигация LNAV

Функция LNAV включает в себя расчёт команд по крену, необходимых для обеспечения полёта в горизонтальной плоскости, рассчитывает и передаёт на индикацию боковое отклонение (XTK) на PFD и ND.

FMS управляет:

  1. В горизонтальной плоскости на маршруте и в зоне аэропорта при выполнении:
      • полёта по заданной последовательности промежуточных пунктов маршрута (ППМ);
      • полёта “Прямо на” (DIRECT-TO) траекторию, ППМ или навигационное радиосредство;
      • поворота с пролетом ППМ или с упреждением;
      • инициализацию процедуры ухода на второй круг (GO AROUND).
  2. При входе в зону ожидания и при полёте в зоне ожидания FMS осуществляет:
      • построение и отображение геометрии зоны ожидания (HOLD);
      • вход в зону ожидания;
      • полёт в зоне ожидания;
      • выход из зоны ожидания.
  3. В горизонтальной плоскости на маршруте:
      • расчёт времени пролёта ППМ и прибытия в конечную точку маршрута;
      • параллельным маршрутом слева или справа от курса действующего плана полёта (OFFSET).

В режиме LNAV FMS может выполнять:

  • смену активного этапа с ППМ типа FLY-BY на следующий при пересечении биссектрисы угла между линиями пути этих этапов. После пересечения новый этап активируется и становится первым;
  • смену активного этапа с ППМ (WPT) типа FLY-OVER на следующий, при проходе ACT WPT или пресечении ее траверза;
  • наведение на точку “Прямо на” (DIRECT-TO) для обеспечения разворота на курс выбранного (введенного в ручную) WPT;
  • навигацию и наведение на курс входа в зону ожидания “Прямо на фиксированную точку” (DIRECT TO FIX);

FMS обеспечивает безопасное самолётовождение в системе зональной навигации B-RNAV по трассам РФ с точностью ±5 км и ±10 км и в районе аэропорта в системе точной зональной навигации P-RNAV с точностью ±1,85 км.

Функция горизонтальной навигации обеспечивает для CDS навигационные параметры, которые отражаются на PFD или ND.

Функция горизонтальной навигации обеспечивает заход на посадку с использованием неточных средств захода на посадку по GPS.

Ввод (модификация) запасного аэропорта

Вычислительная система самолетовождения (FMS) выполняет ввод запасных аэропортов (RTE2 и RTE3), которые строятся как неактивные маршруты.

Уход на запасной аэропорт может быть спланирован использованием измененного активного маршрута:

  • Выполнение полёта с активного плана полёта RTE1 на запасной аэропорт RTE2;
  • Выполнение полёта с активного плана полёта RTE1 на RTE3 с опцией VIA. Точка VIA определена через RTE1 аэропорта взлёта;
  • Выполнение полёта с активного плана полёта на запасной аэропорт RTE3 с опцией VIA. Точка VIA определена через ППМ (WPT) в аэропорте назначения RTE1 (APP, MAP) для прибытия в аэропорт назначения RTE3.

Настройка радиосвязного оборудования с помощью FMS

Функция настройки радиосвязного оборудования обеспечивает работу трёх различных групп систем: навигационные радиосредства, радиосвязное оборудование, а также радиосредства ATC/TCAS.

Настройка навигационных радиосредств

Навигационные радиосредства, доступные на самолетах семейства RRJ: DME1, DME2, ADF1, ADF2 (опция), VOR1, VOR2, MMR1, MMR2 (ILS, GPS).

FMS является основным средством настройки навигационных радиосредств. Все данные, связанные с настройкой, передаются на радиосредства через пульт управления радиосредствами (RMP). При нажатии кнопки NAV на RMP, настройка с FMS блокируется, и все радиосредства настраиваются с пультов RMP.

Функция настройки навигационных радиосредств осуществляет автоматическую настройку для VOR, DME и ILS в соответствие с планом полёта.

Функция управления радиосредствами передает на CDS для отражения на ND режим настойки выбранной станции VOR и ILS, который может быть автоматическим, ручным с MCDU или с пульта RMP.

Настройка радиосвязного оборудования

Радиосвязное оборудование, доступное на самолётах семейства RRJ: VHF1,VHF2, VHF3, HF1 (опция), HF2 (опция).

Функция настройки радиосвязного оборудования осуществляет настройку связных радиостанций. Основным средством настройки радиосвязного оборудования является пульт RMP. Только после того, как оба пульта RMP вышли из строя или выключены, настройка радиостанции выполняется с помощью FMS.

FMS подключается к радиостанциям через пульт RMP. Функция настройки радиосвязного оборудования получает кодовое значение из концентратора данных, которое приводится в действие в случае выхода из строя или выключения двух RMP. При вводе кодового значения функция настройки радиосвязного оборудования устанавливает режим “com port select” для RMP и позволяет осуществить настройку радиосвязи с MCDU. В противном случае, настройка с FMS запрещена. Пульт RMP не подключается непосредственно к высокочастотным радиостанциям. Настройка осуществляется через концентратор данных кабинета авионики, чтобы обеспечить адаптацию протокола. Радиостанция VHF3 не имеет возможности настраиваться с FMS, только с пультов RMP.

Управление радиосредствами ATC/TCAS (подсистема, которая входит в состав оборудования T2CAS)

Выбор режимов и диапазона TCAS осуществляется с FMS. Экипаж воздушного судна может выбрать на MCDU три режима: STANDBY — ожидание, TA ONLY — только ТА, и TA/RA (режим опасного сближения/режим разрешения конфликта) в следующем диапазоне высот: NORMAL - обычный, ABOVE –“над” и BELOW – ”под”.

Кроме того, экипаж воздушного судна может осуществлять следующие действия по управлению транспондерами ATC:

  • Выбор активного транспордера;
  • Выбор режима ATC (STANDBY или ON);
  • Ввод кода XPDR;
  • Активация функции ”FLASH” (с MCDU или нажатием кнопки ATC IDENT на центральном пульте);
  • Управление функцией передачи высоты (ON или OFF).

Кроме того, при активации кнопки "panic" в кабине, функция управления радиосвязью активирует аварийный кодовый сигнал 7500 ATC.

Функция управления радиосвязью проверяет готовность ретрансляторов ATC путем сравнения обратной связи ATC_ACTIVE с командой запуска/ожидания, отправляемой на каждый транспондер ATC. В случае обнаружения неисправности транспондера ATC формируется текстовое сообщение на дисплей.

Функция калькулятора MCDU

Функция MCDU обеспечивает экипаж самолёта калькулятором и конвертером для выполнения следующих преобразований:

  • метры ↔ футы;
  • километры ↔ NM;
  • °C ↔ °F;
  • американские галлоны ↔ литры;
  • килограммы ↔ литры;
  • килограммы ↔ американские галлоны;
  • килограммы ↔ фунты;
  • Kts ↔ мили / час;
  • Kts ↔ километры / час;
  • километры / час ↔ метры/сек;
  • футы/мин ↔ метры/сек.

Оборудование FMS

FMS состоит из двух блоков СМА-9000, в состав которых входят вычислитель и MCDU.

Технические характеристики

  • Вес: 8,5фунтов (3,86кг);
  • Источник питания: 28В постоянного тока;
  • Энергопотребление: 45Вт без подогрева и 75Вт с подогревом (старт с подогревом при температуре меньше 5° C);
  • Пассивное охлаждение без принудительной подачи воздуха;
  • MTBF: 9500 лётных часов;
  • Электрический соединитель: на задней панели FMS расположен разъём 20FJ35AN.

CMA-9000 включает в себя:

  • Базы данных разработанные в соответствии с DO-200A;
  • Программное обеспечение, разработанное в соответствии с DO-178B, уровень C.
  • Сложные элементы аппаратуры, разработанные в соответствии с DO-254, уровень B.

Интерфейсы взаимодействия FMS

Рисунок 2. Интерфейс входных сигналов FMS с системами авионики и системами самолёта

Рисунок 3. Интерфейс выходных сигналов FMS к авионике и другим системам самолёта

Отказобезопасность

Оценка функциональных опасностей системы авионики (SSJ 100 aircraft AVS FHA (RRJ0000-RP-121-109, Rev. F) определяет степень опасности функциональных отказных ситуаций FMS как «Сложная ситуация». Вероятность возникновения отдельных видов отказных ситуаций, рассмотренных в RRJ0000-RP-121-109 rev.F, должна соответствовать следующим требованиям:

  • На всех этапах полётов вероятность не сигнализируемого отказа CMA-9000 не превышает 1.0 Е-05.
  • На всех этапах полётов вероятность выдачи вводящих в заблуждение навигационных данных от CMA-9000 (горизонтальная или вертикальная навигация) на оба навигационных дисплея ND не превышает 1.0 Е-05.
  • На всех этапах полётов вероятность выдачи ложного сигнала управления от CMA-9000 для автопилота не превышает 1.0 Е-05.

Оценка безопасности системы авионики (номер B31016HA02), установленной на самолёте RRJ95В (RRJ Avionics System Safety Assessment (J44474AD, I.R.: 02) of the RRJ Avionics Suite (Part number B31016HA02) as installed in the Russian Regional Jet (RRJ) 95В/LR aircraft) показывает, что вероятность возникновения указанных выше отказных ситуаций, составляет:

  • не сигнализируемого отказа (потери) навигационной информации от FMS - 1,1E-08 на осреднённый час полёта;
  • выдача вводящих в заблуждение навигационных данных от CMA-9000 (горизонтальная или вертикальная навигация) на оба навигационных дисплея ND – 1,2E-09 на осреднённый час полёта;
  • выдача ложного сигнала управления от CMA-9000 для автопилота - 2,0E-06 на осреднённый час полёта.

Полученные (J44474AD, I.R.: 02) вероятности возникновения отказных ситуаций соответствуют требованиям по отказобезопасности (RRJ0000-RP-121-109 rev. F).

В соответствии с требованиями для каждой CMA-9000 вероятность выдачи ложных данных по ARINC 429 не превышает 3.0Е-06.

Уровень разработки аппаратного и программного обеспечения FMS (DAL) по DO-178 - уровень C.

Режим с ухудшенными характеристиками

Обе CMA-9000 подключаются в сдвоенном синхронизированном режиме. Выход из строя только одной не означает снижения функциональности FMS. Экипаж может выполнить реконфигурацию в ручном режиме для отражения на дисплеях данных от противоположной CMA-9000 с помощью пульта управления конфигурации (RCP).

В случае неисправности входного сигнала выбора диапазона и/или режима карты от FCP, FMS передает данные о карте по умолчанию — 40 морских миль / ROSE.

При отказе навигационных датчиков FMS обеспечивает режим DR на основании данных о воздушной обстановке и ветре с целью расчёта местоположения воздушного судна. FMS оповещает экипаж воздушного судна о навигации в режиме DR. В режиме DR FMS обеспечивает возможность ввода текущего местоположения, путевой скорости, маршрута, направления и магнитуды ветра. FMS должна принимать введенный курс.

При совместной работе FMS осуществляет обмен с противоположной CMA-9000 для того, чтобы обеспечивать работу в синхронном режиме.

При работе в независимом режиме или в случае неисправности шины данных между двумя FMS, обеспечена возможность изменения канала передачи данных «главный-подчиненный» с обеих панелей MCDU.

Знание некоторых принципов легко возмещает незнание некоторых фактов

К. Гельвеций

Что такое Аэронавигация?

ответ

Современный термин «аэронавигация», рассматриваемый в узком смысле, имеет два взаимосвязанных значения:

  • некий протекающий в реальности процесс или деятельность людей по достижению определенной цели;
    • Аэронавигация – управление траекторией движения ВС, осуществляемое экипажем в полете . Процесс аэронавигации включает в себя решение трех основных задач:
      • формирование (выбор) заданной траектории;
      • определение местоположения ВС в пространстве и параметров его движения;
      • формирование навигационного решения (управляющих воздействий для вывода ВС на заданную траекторию);
  • наука или учебная дисциплина, изучающая эту деятельность.
    • Аэронавигация как наука и учебная дисциплина. Аэронавигация – прикладная наука о точном, надежном и безопасном вождении ВС из одной точки в другую, о методах применения технических средств навигации.

С какими книгами по аэронавигации лучше ознакомиться для начала?

ответ

Какие приборы обеспечивают процессы аэронавигации в самолёте?

ответ
  • Состав приборов может быть различным, в зависимости от типа ЛА и эпохи его применения. Совокупность таких приборов называют пилотажно-навигационным комплексом (ПНК). Технические средства аэронавигации разделяются на следующие группы:
  • Геотехнические средства . Это средства, принцип действия которых основан на использовании физических полей Земли (магнитного , гравитационного, поля атмосферного давления), либо использовании общих физических законов и свойств (например, свойства инерции). К этой большой и самой древней группе относятся барометрические высотомеры, магнитные и гироскопические компасы , механические часы, инерциальные навигационные системы (ИНС) и т.п.
  • Радиотехнические средства . В настоящее время представляют собой самую большую и самую важную группу средств, являющихся в современной аэронавигации основными для определения как координат ВС , так и направления его движения. Они основаны на излучении и приеме радиоволн бортовыми и наземными радиотехническими устройствами, измерении параметров радиосигнала, который и несет навигационную информацию. В состав этих средств входят радиокомпасы , системы РСБН , VOR , DME , ДИСС и другие.
  • Астрономические средства . Методы определения местоположения и курса корабля с помощью небесных светил (Солнца, Луны и звезд) использовались еще Колумбом и Магелланом. С появлением авиации они были перенесены и в аэронавигационную практику, разумеется, при использовании специально сконструированных для этого технических средств – астрокомпасов , секстантов и ориентаторов. Однако точность астрономических средств была низка, а время, необходимое для определения с их помощью навигационных параметров, достаточно велико, поэтому с появлением более точных и удобных радиотехнических средств астрономические средства оказались за рамками штатного оборудования гражданских ВС , оставаясь лишь на самолетах, выполняющих полеты в полярных районах.
  • Светотехнические средства . Когда-то, на заре авиации, световые маяки, наподобие морских маяков, устанавливали на аэродромах с тем, чтобы ночью пилот издалека смог его увидеть и выйти на аэродром. По мере того, как полеты все больше стали проходить по приборам и в сложных метеоусловиях, такая практика стала сокращаться. В настоящее время светотехнические средства используются главным образом при заходе на посадку. Различные системы светотехнического оборудования позволяют экипажу на конечном этапе захода обнаружить взлетно-посадочную полосу (ВПП) и определить положение ВС относительно нее.

Как разобраться с высотой, давлением, QNE , QFE , QNH и прочим?

ответ
  • Читаем статью Сергея Сумарокова "Альтиметр 2992 "

Где взять маршрут для составления плана полёта?

ответ

Трассы прокладывают наиболее оптимальными путями, стараясь при этом обеспечивать кратчайшие маршруты между аэропортами, и одновременно учитывая необходимость обхода запретных зон (испытательные аэродромы, зоны полетов ВВС, полигоны и т.д.). При этом маршруты проложенные по участкам этих трасс, по возможности приближают к ортодромическим . Трассы перечисляются в специальных сборниках, например Перечень воздушных трасс РФ . В сборниках трасса обозначается списком последовательно перечисленных ППМ . В качестве ППМ используются радиомаяки (VOR , NDB) или просто именованные точки с фиксированными координатами. В графическом представлении трассы нанесены на радионавигационные карты (РНК).

Очень удобный и наглядный сайт для составления маршрутов skyvector.com

  • Если хотите реализм, нужно пользоваться готовыми маршрутами. Например,
  • Маршруты для СНГ на infogate.matfmc.ru
    • имеется аналогичная, но немного устаревшая база -
  • Можно составить самостоятельно по РНК или Перечням воздушных трасс
  • Skyvector.com - очень удобный интерфейс для самостоятельного составления маршрута или анализа существующих трасс
  • Для генерации виртуальных маршрутов существуют специализированные сайты, например:
    • SimBrief обзор на сайт
    • Отображение готовых маршрутов на карте
  • Загляните ещё на эти сайты:

В общем случае маршрут выглядит так: UUEE SID AR CORR2 BG R805 TU G723 RATIN UN869 VTB UL999 KURPI STAR UMMS

Убираем коды аэропортов вылета и прилета (Шереметьево, Минск) , слова SID и STAR обозначающие схемы выхода и захода. Также следует учесть что если между двумя точками отсутствует трасса и данный участок пролегает напрямую (что очень часто встречается), он обозначается знаком DCT.

AR CORR2 BG R805 TU G723 RATIN UN869 VTB UL999 KURPI, где AR, BG, ТU, RATIN, VTB и KURPI - ППМ . Между ними обозначены используемые трассы.

Что такое схемы захода, Jeppessen, SID, STAR и как этим пользоваться?

ответ

Если Вы собираетесь занять к точке завершения снижения определённый эшелон , то вертикальную скорость (Vверт ) определяем через три переменные:

  • путевая скорость (W );
  • высота, которую надо "потерять" (Н );
  • дистанция, на которой будет выполняться снижение.

Как научиться применять РСБН и НАС-1

ответ

Проблемы с РСБН Ан-24РВ Samdim

ответ

Возможные проблемы с РСБН для этого самолёта собраны в Ан-24 FAQ

Основные навигационные параметры в англоязычной терминологии

ответ
  • True North - North Pole, the vertical axis of sectional charts, meridians
  • Magnetic North - Magnetic Pole, earth"s magnetic lines of force affecting the compass.
  • Variation - angular difference between true north and magnetic north. The angle may be to the east or west side of north. Eastern variation is subtracted from true north (Everywhere west of Chicago) and western variation (Everywhere east of Chicago) is added to obtain magnetic course. East is least and West is best: memory aid for whether to add or subtract variation. West of Chicago it is always subtracted.
  • Isogonic lines - Magenta dashed lines on sectional showing variation. VOR roses have variation applied so that variation can be determined by measuring the angle of the North arrow on the rose from a vertical line.
  • Deviation - Compass error. A compass card in the airplane tells the amount of error to be applied to magnetic course to obtain compass course. Make a copy to keep at home for planning purposes.
  • True Course - The line drawn on the map. Draw multiple lines with spaces //// from airport center to airport center. Multiple lines permit chart features to be read.
  • Magnetic Course - True Course (TC) +/- variation = Magnetic Course. Put Magnetic Course on sectional for use while flying. This course determines hemispheric direction for correct altitude over 3000" AGL.
  • Compass Course - Magnetic Course minus deviation gives Compass Course. The difference is usually only a few degrees.
  • Course - A route which has no wind correction applied
  • Heading - a route on which wind correction has been applied to a course.
  • True Heading - angular difference from true course, the line on the chart, caused by the calculated wind correction angle (WCA ).
  • Magnetic Heading - angular difference from magnetic course caused by wind correction angle; also, obtained by applying variation to true heading.
  • Compass Heading - angular difference from compass course caused by wind correction angle; also, obtained by applying deviation to magnetic heading. If wind is AS computed, this is the direction you fly.
  • True airspeed - Indicated airspeed corrected for pressure, temperature, and instrument error. This is found in the aircraft manual. Cessna is overly optimistic in its figures.
  • Ground speed - actual speed over the ground. This is the speed on which you base your ETA"s
  • Wind Correction angle - angular correction in aircraft heading required to compensate for drift caused by wind. Correctly computed it will allow the aircraft to track the line drawn on the chart.
  • Indicated altitude - Altimeter reading with Kollsman window set for local pressure and corrected for instrument error.
  • Pressure altitude - altimeter reading with Kollsman window set for 29.92. Used for density altitude and true airspeed computations.) Temperature is not used in determining pressure altitude.
  • True Altitude - distance above datum plane of sea level
  • Density Altitude - Pressure altitude corrected for temperature. This is the altitude that determines aircraft performance.

В симуляторе неправильно отображается... (день, ночь, время, Луна, звёзды, освещение дорог)

  • смена дня и ночи
    • на обсуждения корректной смены дня, ночи, времени...
    • И если хотите реализма, никогда не ставьте никаких FS RealTime, TzFiles и пр. Симулятор отображает движение светил и освещённость по реальным астрономическим законам. Вот, например,
  • время
    • Реалистичные бортовые часы . В частности, не переключаются самопроизвольно по часовым поясам.
  • смена фаз Луны
    • RealMoon HD Реалистичные текстуры Луны (FS2004 , FSX)
    • на сайт
  • звёздное небо
    • Читаем статью "Навигационные светила ". В конце приведены ссылки помогающие сделать реалистичный вид звёздного неба в FS2004. Это производится заменой файла stars.dat.

Intensity = 230 NumStars = 400 Constellations = 0

  • дороги ночью светятся

Находим у себя файлы по этому пути: Твой диск:\Твоя папка сима\Scenery\World\texture\

На сегодняшний день технологии навигации находятся на таком уровне развития, который позволяет использовать их в самых различных сферах. Спектр возможного использования навигационных систем очень широк. В мировой практике навигационные системы нашли применение не только в таких сферах как военная и гражданская авиация, но и в судоходстве, управлении наземным транспортом, а также при выполнении геодезических работ . Но независимо от сферы применения все навигационные системы должны отвечать основным требованиям:

Целостность

Непрерывность работы

Точность определения скорости передвижения объекта, времени и координат местонахождения

Организационная, пространственная и временная доступность.

В области авиации используются разные навигационные системы, в зависимости от целей и направления, в котором используется летательный аппарат. Более полную информацию о различных видах авиации можно найти на сайте . Прежде всего, системы навигации используются в гражданской авиации, которая требует от систем навигации обеспечения безопасности и надежности, а также экономичности воздушного движения. Кроме того, авиационные системы навигации должны быть глобальными и едиными для всех этапов полета , в целях сокращения количества аппаратуры, как на борту, так и в наземным пунктах. При этом они также должны давать возможность четко определять курс движения и расстояние до пункта назначения и отклонение от заданного курса.

К основным задачам воздушной навигации относятся:

1. Определение элементов навигации летательного аппарата. При этом определяются его координаты, высота (абсолютная и относительная), скорость полета, курс движения и множество других параметров.

2. Контроль пути и его исправление по мере необходимости

3. Построение оптимального маршрута для достижения пункта назначения. В этом случае основная задача системы навигации состоит в помощи для достижения точки назначения за минимальное время при минимальном расходе топлива

4. Оперативная корректировка маршрута во время полета. Необходимость изменения полетного задания может возникнуть при неисправности летательного аппарата, при наличии неблагоприятных метеорологических явлений на пути движения, для сближения с определенным летательным аппаратом или, наоборот, для избежания столкновения с ним.

Для определения систем навигации летательного аппарата используются разные технические средства. Геотехнические средства позволяют определить высоту полета, как абсолютную, так и относительную, местонахождение летательного аппарата и курс его движения. Они представлены различными техническими средствами: высотомерами, оптическими визирами, различными компасами и т.д. Радиотехнические средства позволяют определить путевую скорость, истинную высоту полета и местонахождение летательного аппарата при помощи измерения по радиосигналам разных показателей электромагнитного поля.

С точки зрения авторов сайта , астрономические навигационные средства также могут определять местонахождение летательного аппарата и курс его движения. В этих целях используются астрономические компасы, астроориентаторы и прочая техника. Задача светотехнических систем навигации (светомаяков) состоит в обеспечении посадки летательных аппаратов в ночное время или в затрудненных метеорологических условиях при помощи облегченной ориентировки в пространстве. И, наконец, существуют комплексные навигационные системы, которые способны обеспечивать по всему маршруту автоматический полет. При этом возможен даже заход на посадку без видимости посадочной поверхности. Такие системы еще называются автопилотом.

Современные средства обороны и нападения «крутятся» вокруг точного определения координат – своих и противоборствующей стороны. Миллиарды долларов тратятся экономически развитыми странами на создание глобальных навигационных систем. В результате этого тренда в США появилась GPS, в России – ГЛОНАСС, в Европе – «Галилео». Но в последнее время политики, военные и ученые удивительно единодушно делают вывод о том, что своя глобальная навигационная система – это еще не панацея в достижении военного превосходства в современной войне.

Признаем честно: спутниковая система необходима, она в режиме реального времени дает высочайшую точность определения координат для самолетов, ракет, кораблей и наземной бронетехники. Но современными средствами радиоэлектронной борьбы противник может спутниковый сигнал исказить, «зашумить», отключить, в конце концов, уничтожить сам спутник.

Российская система ГЛОНАСС также, как и американская GPS, имеет два режима передачи навигационного сигнала – открытый и закрытый. Однако, если уровень помехового сигнала свыше 20 дБ, то можно заглушить любой навигационный сигнал – сейчас или в ближайшем будущем, ведь развитие техники и технологий не стоит на месте.

В батальонах и полках РЭБ есть штатная станция подавления сигнала GPS. И случаи пропажи спутников в мировой космической практике тоже известны. Поэтому у российских военных есть догма: на любом объекте должна быть автономная инерциальная навигационная система (ИНС). В силу принципа своего действия ИНС является помехозащищенным, не подверженным действиям средств из арсенала РЭБ источником навигационной информации, и в настоящее время одна из ее разновидностей – бесплатформенная инерциальная навигационная система (БИНС) – находит наиболее широкое применение.

БИНС устанавливаются везде: на самолетах, на наземной бронетехнике, на ракетах. Для каждого вида подвижного объекта предназначен свой тип БИНС. В военной технике наличие автономных ИНС является обязательным, а их совершенствование – одна из главных задач промышленности.

На передовых рубежах научно-технического прогресса

Развитие современной науки позволило передовым странам создать качественно новые ИНС. Раньше инерциальные навигационные системы были платформенного типа на базе электромеханических гироскопов и акселерометров в кардановом подвесе. В бссплатформенных инерциальных навигационных системах нет подвижных деталей. Сам гироскоп, можно сказать трансформировался в электровакуумный прибор.

В настоящее время гироскопы есть лазерные, волоконно-оптические, волновые твердотельные, микро-механические. Какой из них самый совершенный – это вопрос удовлетворения требований потребителя к точности формирования навигационной информации. Чем ниже точность и проще технология, тем ИНС дешевле. Лазерный гироскоп самый точный, но при этом достаточно сложный и дорогой. Есть и другие типы гироскопов, которые еще не достигли технологического совершенства и не используются индустриально, например, СВЧ, ядерный магнитно-резонансный, гироскоп на холодных атомах и другие.

В точных и высокоточных БИНС наиболее распространенные, отработанные и массовые сейчас – лазерные. Современный БИНС на лазерных гироскопах и кварцевых акселерометрах является одним из наиболее сложных и высокотехнологичных изделий авиакосмической промышленности.

Сегодня эти системы являются незаменимым автономным средством навигации и востребованы широким классом потребителей, так как обладают рядом преимуществ тактического характера: автономностью, невозможностью воздействия на них помех, непрерывностью и глобальностью функционирования в любое время года и суток на воздушных, морских и наземных объектах. БИНС выдают информацию для решения задач навигации, управления полетом, прицеливания, подготовки и наведения ракет, а также для обеспечения работоспособности радиолокационных, оптикоэлектронных, инфракрасных и других бортовых систем. На магистральных самолетах коммерческой авиации автономные инерциальные системы являются основным средством навигации и определения пространственного положения.

Обладание всей номенклатурой возможностей для разработки и производства высокоточных БИНС выдвигает страну на передовые рубежи технического прогресса и непосредственно влияет на обеспечение безопасности государства. В мире не так много стран, освоивших сложное производство этих систем. Их можно перечесть по пальцам одной руки – Китай, Россия, США и Франция.

Разработкой БИНС авиационного применения в России занимаются пять организаций, в том числе и Московский институт электромеханики и автоматики (МИЭА), входящий в КРЭТ. Причем БИНС только этого института принят в серийное производство. Системы навигации на лазерных гироскопах и кварцевых акселерометрах, разработанные в МИЭА входят в состав комплексов бортового оборудования современных и перспективных самолетов гражданского и военного назначения.

Как это работает

Кольцевые лазерные гироскопы и кварцевые акселерометры сегодня – самые точные и наиболее распространенные в мире. Их разработка и производство одна из компетенций КРЭТ.

Инерциальная навигационная система (БИНС)

Принцип действия лазерного гироскопа заключается в том, что внутри замкнутого по периметру пространства, образованного системой зеркал и корпусом, изготовленным из специального стекла, возбуждаются два лазерных луча, которые по каналам идут навстречу друг другу. Когда гироскоп находится в состоянии покоя, два луча «бегут» навстречу друг другу с одинаковой частотой, а когда начинает совершать угловое движение, то каждый из лучей изменяет свою частоту в зависимости от направления и скорости этого движения.

Через одно из зеркал выводится часть энергии лучей и формируется интерференционная картина. Наблюдая за этой картиной, с помощью фотоприемника считывают информацию об угловом движении гироскопа, определяют направление вращения по направлению движения интерференционной картины и величину угловой скорости по скорости ее движения. Фотоприемник преобразует оптический сигнал в электрический, очень маломощный, а дальше начинаются процессы его усиления, фильтрации и отделения помех.

Сам гироскоп одноосный, он измеряет угловую скорость, действующую вдоль его оси чувствительности, которая перпендикулярна плоскости распространения лазерных лучей. Поэтому система состоит из трех гироскопов. Для получения информации не только об угловом, но и о линейном движении объекта в системе используются три измерителя ускорения – акселерометра. Это очень точные приборы, в которых на упругом подвесе в виде маятника подвешивается пробная масса. Современные акселерометры осуществляют измерения с точностью до одной стотысячной доли ускорения свободного падения.

Точность на молекулярном уровне

Сейчас промышленность выпускает столько БИНС, сколько ей заказывают Минобороны, Министерство транспорта и другие ведомства. Однако в ближайшем будущем спрос на автономные инерциальные системы начнет существенно расти. Чтобы разобраться в современных возможностях их производства, надо в первую очередь понимать, что речь идет о высокотехнологичных изделиях, в которых сходится много технологий – это и оптика, и электроника, и вакуумная обработка, и прецизионное полирование.

Например, шероховатость поверхности зеркала при финишной полировке должна быть на уровне 0,1 нанометра, то есть это уже почти молекулярный уровень. В гироскопах зеркала двух типов: плоские и сферические. Зеркало имеет диаметр 5 мм. Зеркальное покрытие наносится методом ионного напыления на специальный стекло-кристаллический материал ситалл. Толщина каждого из слоев имеет порядок 100 нанометров.

Лазерный луч распространяется в гелий-неоновой газовой среде низкого давления. Характеристики этой среды должны быть неизменными на протяжении всего срока эксплуатации гироскопа. Изменение состава газовой среды за счет попадания в нее даже ничтожного количества внутренних и наружных примесей приводит сначала к изменению характеристик гироскопа, а затем и его отказу.

Есть свои трудности и в электронике. Приходится работать с маломощным частотно-модулированным сигналом, для которого надо обеспечить требуемое усиление, фильтрацию, подавление помех и преобразование в цифру, а кроме того выполнить требования по помехозащищенности во всех условиях эксплуатации. В БИНС разработки КРЭТ все эти задачи решены.

Сам прибор должен выдерживать интервалы рабочих температур от минус 60 до плюс 55 градусов по шкале Цельсия. Технология изготовления прибора гарантирует его надежную работу во всем диапазоне температур в процессе полного жизненного цикла авиационного изделия, который составляет десятки лет.

Одним словом, в процессе производства приходится преодолевать множество трудностей. Сегодня все технологии, применяемые при изготовлении БИНС, освоены на предприятиях КРЭТ.

Трудности роста

Два предприятия Концерна выпускают лазерные гироскопы – Раменский приборостроительный завод (РПЗ) и завод «Электроприбор» в Тамбове. Но их производственные возможности, которые сегодня еще удовлетворяют потребности заказчиков, завтра могут оказаться недостаточными из-за большой составляющей доли ручного труда, что заметно снижает процент выхода готовой продукции.

Понимая, что с ростом заказов на изготовление военной и гражданской техники нужно на порядок увеличивать объем производства, руководство КРЭТ инициирует проект технического перевооружения заводов. Такой проект формируется для производства всех систем, включая и оптические компоненты. Он рассчитан на выпуск 1,5 тысяч высокоточных систем в год, в том числе и для наземной техники. Это значит надо производить 4,5 тысяч гироскопов, соответственно – примерно 20 тысяч зеркал. Вручную такое количество сделать невозможно.

Техперевооружение предприятий позволит выйти на требуемые объемы. По плану производство первых отдельных узлов начнется уже в конце следующего года, а систем в целом – в 2017 году с постепенным наращиванием количественных показателей.

Доля государства в финансировании проекта составляет 60%, остальные 40% привлекаются КРЭТ в виде банковских кредитов и доходов от продажи непрофильных активов. Однако создание БИНС это задача не одного института и даже не одного концерна. Ее решение лежит в плоскости общегосударственных интересов.

Включайся в дискуссию
Читайте также
Как открыть разъем для сим-карты у iPhone?
Прошивка планшета Explay Leader
Как начать писать свой блог с нуля: план на моем примере